Сделай Сам Свою Работу на 5

Закон исключенного третьего.





Закон исключённого третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. Он утверждает: из двух противоречащих высказываний одно является истинным, другое ложным, а третьего не дано.

Например: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют ее» и т.п. Само название закона выражает его смысл: дело обстоит так, как говорится в рассматриваемом высказывании, или так, как говорится в его отрицании, и никакой третьей возможности нет. Человек говорит прозой или не говорит прозой, собака выполняет команду или не выполняет ее и т.п. — других вариантов не существует. Мы можем не знать, противоречива некоторая теория или нет, но на основе закона исключенного третьего еще до начала исследования мы вправе заявить: она или непротиворечива или противоречива.

Отрицающие пары суждений: Это S есть Р. Это S не есть Р (единичные суждения); Все S есть Р. Некоторые S не есть Р (суждения А и О); Ни одно S не есть Р. Некоторые S есть Р (Суждения Е и I). В отношении пар А и О, Е и I действует как данный закон, таки закон противоречия. В этом их сходство. Но, например в паре А Е будет действовать только закон противоречия: Все грибы съедобны. Ни один гриб не является съедобным. Они оба могут быть ложными, но не истинными.



Доказательство. Виды доказательства. Спор.

Доказательство - это логическая операция обоснования истинности какого-нибудь положения с помощью других, истинных и связанных с ним положений.

Различают два вида доказательств: прямые и косвенные.

Прямое доказательство - обоснование тезиса аргументами без помощи каких-либо дополнительных логических построений. Тезис здесь выводится непосредственно из аргументов с помощью простых форм умозаключений. В предыдущих двух модулях они рассмотрены достаточно подробно.

Косвенное доказательство представляет собой рассуждение, в котором истинность тезиса доказывается через опровержение противоречащего ему утверждения (в соответствии с законом исключённого третьего). Косвенное доказательство осуществляется двумя способами:

1) «приведение к абсурду» (апогогическое доказательство) состоит в том, что вначале предпринимается доказательство тезиса, противоречащего исходному, тезис доводится до абсурда или до противоречия с теми или иными уже установленными истинами, а затем из ложности данного тезиса делается вывод об истинности исходного положения;



2) разделительное косвенное доказательство - такое сложное рассуждение, в ходе которого из нескольких исходных суждений выводится ложность всех кроме одного, которое и признаётся истинным.

Спор бывает трех видов: научная и деловая дискуссия и полемика.

В первом случае целью спора является решение какой-либо практической или теоретической проблемы, возникающей в рамках определенной науки.

Вторая направлена на достижение согласия по основным положениям, выдвинутым сторонами, нахождение решения, соответствующего реальному положению вещей.

И последний вид спора, полемика, служит для достижения победы. В наиболее общем виде можно сказать, что это спор ради спора.

Однако четкого разграничения между полемикой и двумя предыдущими видами спора провести нельзя: каждый спор, когда он ведется по правилам логики и без использования недопустимых приемов, ведет к достижению истины, в какой бы области он ни затевался.

Спор может проходить при публике, присутствие которой приходится учитывать участникам спора, и без нее. Споры при публике, особенно как демонстрация ораторского мастерства, характерны более для Древней Греции, чем для настоящего времени.

Кулуарный спор, или спор без зрителей, слушателей, был распространен всегда. Так могут спорить, например, депутаты до или после вынесения законопроекта по основным его пунктам. Так могут спорить и ученые, обсуждающие новое открытие или нюансы своей работы.



Спор может проходить с арбитром и без арбитра. Роль арбитра может выполнять публика, когда спор ведется публично, но чаще на роль судьи назначают отдельного человека. Это делается потому, что несколько людей не всегда сами могут прийти к однозначному согласию и спор между двумя оппонентами может породить спор между публикой, что не очень хорошо сказывается на оперативности спора. Человек, который избран судьей, конечно, должен обладать хорошими познаниями в области логики.

Диспутом называют спор между двумя людьми, на котором присутствует публика.

Для того чтобы спор проходил по возможности спокойно, а стороны могли бы предлагать свои аргументы последовательно, порядок обсуждения вопросов часто оговаривается заранее. Стороны объясняют, к каким теориям они будут апеллировать.

Стороны в споре называют по-разному, но чаще всего – оппонентами. Иногда используют термин «пропонент». Пропонентом называют сторону, которая выдвинула тезис для опровержения другой стороной. Последняя называется оппонентом. Также используют понятие «противник». В основном так называют участников спора, направленного на достижение победы.

В зависимости от вида спора применяются та или иная стратегия и тактика аргументации и критики.

Стратегия – это определенная заранее схема, план построения аргументации, доказательства или опровержения.

Логический квадрат.

Простые суждения делятся на сравнимые и несравнимые.

Сравнимые (идентичные по материалу) суждения имеют одинаковые субъекты и предикаты, но могут отличаться кванторами и связками. Например, суждения: «Все школьники изучают математику», «Некоторые школьники не изучают математику», – являются сравнимыми: у них совпадают субъекты и предикаты, а кванторы и связки различаются. Несравнимые суждения имеют разные субъекты и предикаты. Например, суждения: «Все школьники изучают математику», «Некоторые спортсмены – это олимпийские чемпионы», – являются несравнимыми: субъекты и предикаты у них не совпадают.

Сравнимые суждения бывают, как и понятия, совместимыми и несовместимыми и могут находиться в различных отношениях между собой.

Совместимыми называются суждения, которые могут быть одновременно истинными. Например, суждения: «Некоторые люди – это спортсмены», «Некоторые люди – это не спортсмены», – являются одновременно истинными и представляют собой совместимые суждения.

Несовместимыми называются суждения, которые не могут быть одновременно истинными: истинность одного из них обязательно означает ложность другого. Например, суждения: «Все школьники изучают математику», «Некоторые школьники не изучают математику», – не могут быть одновременно истинными и являются несовместимыми (истинность первого суждения с неизбежностью приводит к ложности второго).

Совместимые суждения могут находиться в следующих отношениях:

1. Равнозначность – это отношение между двумя суждениями, у которых и субъекты, и предикаты, и связки, и кванторы совпадают. Например, суждения: «Москва является древним городом»,

«Столица России является древним городом», – находятся в отношении равнозначности.

2. Подчинение – это отношение между двумя суждениями, у которых предикаты и связки совпадают, а субъекты находятся в отношении вида и рода. Например, суждения: «Все растения являются живыми организмами», «Все цветы (некоторые растения) являются живыми организмами», – находятся в отношении подчинения.

3. Частичное совпадение (субконтрарность) – это отношение между двумя суждениями, у которых субъекты и предикаты совпадают, а связки различаются. Например, суждения: «Некоторые грибы являются съедобными», «Некоторые грибы не являются съедобными», – находятся в отношении частичного совпадения. Необходимо отметить, что в этом отношении находятся только частные суждения – частноутвердительные (I) и частноотрицательные (O).

Несовместимые суждения могут находиться в следующих отношениях.

1. Противоположность (контрарность) – это отношение между двумя суждениями, у которых субъекты и предикаты совпадают, а связки различаются. Например, суждения: «Все люди являются правдивыми», «Все люди не являются правдивыми», – находятся в отношении противоположности. В этом отношении могут быть только общие суждения – общеутвердительные (A) и общеотрицательные (E). Важным признаком противоположных суждений является то, что они не могут быть одновременно истинными, но могут быть одновременно ложными. Так, два приведённых противоположных суждения не могут быть одновременно истинными, но могут быть одновременно ложными: неправда, что все люди являются правдивыми, но также неправда, что все люди не являются правдивыми.

Противоположные суждения могут быть одновременно ложными, потому что между ними, обозначающими какие-то крайние варианты, всегда есть третий, средний, промежуточный вариант. Если этот средний вариант будет истинным, то два крайних окажутся ложными. Между противоположными (крайними) суждениями: «Все люди являются правдивыми», «Все люди не являются правдивыми», – есть третий, средний вариант: «Некоторые люди являются правдивыми, а некоторые не являются таковыми», – который, будучи истинным суждением, обусловливает одновременную ложность двух крайних, противоположных суждений.

2. Противоречие (контрадикторность) – это отношение между двумя суждениями, у которых предикаты совпадают, связки различны, а субъекты отличаются своими объёмами, т. е. находятся в отношении подчинения (вида и рода). Например, суждения: «Все люди являются правдивыми», «Некоторые люди не являются правдивыми», – находятся в отношении противоречия. Важным признаком противоречащих суждений, в отличие от противоположных, является то, что между ними не может быть третьего, среднего, промежуточного варианта. В силу этого два противоречащих суждения не могут быть одновременно истинными и не могут быть одновременно ложными: истинность одного из них обязательно означает ложность другого, и наоборот – ложность одного обусловливает истинность другого. К противоположным и противоречащим суждениям мы ещё вернёмся, когда речь пойдёт о логических законах противоречия и исключённого третьего.

Рассмотренные отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата (рис. 32), который был разработан ещё средневековыми логиками:

Вершины квадрата обозначают четыре вида простых суждений, а его стороны и диагонали – отношения между ними. Так, суждения вида A и вида I, а также суждения вида E и вида O находятся в отношении подчинения. Суждения вида A и вида E находятся в отношении противоположности, а суждения вида I и вида O – частичного совпадения. Суждения вида A и вида O, а также суждения вида E и вида I находятся в отношении противоречия. Неудивительно, что логический квадрат не изображает отношение равнозначности, потому что в этом отношении находятся одинаковые по виду суждения, т. е. равнозначность – это отношение между суждениями A и A, I и I, E и E, O и O. Чтобы установить отношение между двумя суждениями, достаточно определить, к какому виду относится каждое из них. Например, надо выяснить, в каком отношении находятся суждения: «Все люди изучали логику», «Некоторые люди не изучали логику». Видя, что первое суждение является общеутвердительным (A), а второе частноотрицательным (O), мы без труда устанавливаем отношение между ними с помощью логического квадрата – противоречие. Суждения: «Все люди изучали логику (A)», «Некоторые люди изучали логику (I)», находятся в отношении подчинения, а суждения: «Все люди изучали логику (A)», «Все люди не изучали логику (E)», – находятся в отношении противоположности.

Как уже говорилось, важным свойством суждений, в отличие от понятий, является то, что они могут быть истинными или ложными.

Что касается сравнимых суждений, то истинностные значения каждого из них определённым образом связаны с истинностными значениями остальных. Так, если суждение вида A является истинным или ложным, то три других (I, E, O), сравнимых с ним суждения (имеющих сходные с ним субъекты и предикаты), в зависимости от этого (от истинности или ложности суждения вида A) тоже являются истинными или ложными. Например, если суждение вида A: «Все тигры – это хищники», – является истинным, то суждение вида I: «Некоторые тигры – это хищники», – также является истинным (если все тигры – хищники, то и часть из них, т. е. некоторые тигры – это тоже хищники), суждение вида E: «Все тигры – это не хищники», – является ложным, и суждение вида O: «Некоторые тигры – это не хищники», – также является ложным. Таким образом, в данном случае из истинности суждения вида A вытекает истинность суждения вида I и ложность суждений вида E и вида O (разумеется, речь идёт о сравнимых суждениях, т. е. имеющих одинаковые субъекты и предикаты).

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.