Изменение матрицы линейного преобразования при изменении базиса
В предыдущем разделе мы установили, что как только в линейном пространстве выбран базис, то каждому линейному преобразованию соответствует матрица этого преобразования. Однако если выбрать в пространстве другой базис, то матрица преобразования, как правило, станет другой. Выясним, как эти матрицы связаны между собой.
Пусть -- -мерное линейное пространство, и -- два базиса в этом пространстве. Первый из них назовем "старым", а второй -- "новым". Пусть -- матрица перехода 19.1.4 а от старого базиса к новому.
Предложение 19.1 Пусть -- линейное преобразование пространства , и -- матрицы этого преобразования в старом и новом базисе соответственно. Тогда
Доказательство. Пусть -- произвольный вектор пространства , -- его образ, то есть . Пусть и -- координатные столбцы векторов и в старом базисе, а , -- в новом. Тогда в силу формулы (19.3) . По предложению 18.5 имеем , . Подставим эти выражения в предыдущую формулу, получаем . Откуда . С другой стороны, в силу формулы (19.3) в новом базисе . Сравнивая это равенство с предыдущим, получаем .
Определение 19.2 Две квадратных матрицы и одного порядка называются подобными, если существует такая невырожденная матрица , что .
Следствие 19.1 Матрицы одного линейного преобразования, соответствующие разным базисам, подобны друг другу, и наоборот, если матрицы подобны, то они являются матрицами одного и того же преобразования в разных базисах.
Напомним, что в евклидовом пространстве определено скалярное произведение векторов
Определение. Если существует такой оператор B,что для любых и из евклидова пространства E справедливо , то оператор B называется сопряженным оператором к оператору A и обозначается A*:
Теорема. ЕслиA — линейный оператор в евклидовом пространстве E и A—его матрица в некотором ортонормированном базисе в E, то у оператора есть единственный сопряженный оператор, причем матрица сопряженного оператора в том же базисе — это матрица AT.
Теорема доказана на лекции.
Пример.Рассмотрим оператор Uj поворота пространства R2 на угол j относительно начала координат против часовой стрелки:
Т.е. оператор, сопряженный оператору поворотапространства R2 на угол j относительно начала координат против часовой стрелки — оператор поворота пространства R2 на угол - j относительно начала координат против часовой стрелки.
Матрицы операторов поворота на угол j и угол - j имеют, соответственно, вид:
Видно, что
Нетрудно доказать (на лекции доказано) следующие свойства сопряженного оператора:
· что сопряженный к линейному оператру — линейный оператор;
·
·
·
· характеристические многочлены операторов и
совпадают.
5.3.2.Самосопряженный оператор
Определение. Если линейный операторA, действующий в евклидовом пространсте E, таков, что для любых и из E справедливо , то оператор A называется самосопряженным оператором.
Пример.Оператор P2 — оператор проектирования пространства R3 на подпространство R2 параллельно вектору : .
Как показано выше, матрица оператора P2 в естественном ортонормированном базисе
Имеет вид
Тогда
т.е. — оператор P2 — самосопряженный оператор.
Видно, что матрица P2 оператора P2 — симметричная матрица.
Нетрудно доказать следующие свойства самосопряженного оператора:
· сумма самосопряженных операторов — самосопряженный оператор;
· если оператор A самосопряженный оператор, то оператор — тоже самосопряженный оператор ( — действительное число).
5.3.3.Собственные значения и собственные векторы самосопряженного оператора
Можно показать (на лекции не доказывается), что у самосопряженного оператора существует собственный ортонормированный базис.
Поскольку A=A*, то матрица самосопряженного оператора — симметричная матрица. Справедлива следующая теорема.
Теорема. Матрица самосопряженного оператора в собственном базисе имеет диагональную форму.
Ясно, что для того чтобы привести матрицу самосопряженного оператор к диагональному виду нужно найти собственные значения оператора и диагональную матрицу, на диагонали которой расположены собственные значения матрицы.
Если нужно записать выражение для приведения матрицы к этой диагональной форме, то нужно еще найти собственные векторы матрицы, записать матрицу C перехода к собственному базису (матрицу, столбцами которой являются координаты собственных векторов оператора), найти обратную к ней матрицу С-1 и тогда — равенство, связывающее диагональну форму матрицы оператора в собственном базисе с матрицей A оператора в заданном базисе.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|