Взаимодействие ионизирующих излучений с веществом
Взаимодействиеα-частиц с веществом
При взаимодействии α-частиц с веществом их энергия расходуется на возбуждение и ионизацию атомов среды. Эти процессы происходят в результате неупругих столкновений частиц с орбитальными электронами атомов. В отдельных (довольно редких) случаях α-частица может проникать в ядро, вызывая ядерную реакцию (α, n). Длина пробега α-частиц в веществе зависит от их начальной энергии, а также от порядкового номера, атомной массы и плотности материала. При расчетах длина пробега α-частиц определяется из экспериментальных формул. Так, например, для воздуха при 0 ?С и 760 мм рт. ст. пробег α-частиц с энергией от 3 до 8 МэВ может быть найден по формуле Гейгера с погрешностью до 5%:
Длина пробега α-частиц в других средах может быть определена по формуле Брэгга и Глессена:
где Е - энергия α-частиц, МэВ; А - атомная масса, г; Z - порядковый номер; ρ - плотность поглощающего вещества, г/см3.
Число пар ионов на единицу пути пробега, возникающих при взаимодействии α-частиц с веществом, зависит от глубины их проникновения. На рис. 1 представлен график изменения удельной плотности ионизации биологической ткани вдоль пробега α-частицы 210Ро, Еа которого равна 5,3 МэВ. В начале пробега α-частицы удельная ионизация остается постоянной, а по мере
Рис. 1.Изменение удельной плотности ионизации в биологической ткани вдоль пробега α-частиц 210Ро (Е - 5,3 МэВ)
снижения энергии частицы она резко возрастает, достигая максимума в конце пути.
Обладая относительно большой массой и зарядом, α-частицы имеют незначительную проникающую способность. Так, для α-частиц с энергией 4 МэВ длина пробега в воздухе составляет 2,5 см, в биологической ткани - 31 мкм, в алюминии - 16 мкм. Вместе с тем для α-частиц характерны высокие показатели линейной передачи энергии.
Взаимодействиеβ-частиц с веществом
При прохождении β-частиц через вещество возможны упругие и неупругие взаимодействия с атомами поглощающей среды. Упругие взаимодействия заключаются в том, что сумма кинетических энергий взаимодействующих частиц после взаимодействия остается неизменной. При неупругом взаимодействии часть энергии взаимодействующих частиц передается образовавшимся свободным частицам или квантам (неупругое рассеяние, ионизация и возбуждение атомов, возбуждение ядер, тормозное излучение). Линейная передача энергии β-частиц при их взаимодействии с веществом пропорциональна плотности атомов в 1 см3 вещества n, порядковому номеру вещества Z и коэффициенту В - линейной функции 1ηΕβ, т.е.:
При проникновении заряженной частицы в кулоновское поле ядра атома скорость ее меняется как по величине, так и по на- правлению. Ускорение частицы с зарядом zE и массой m в поле ядра с зарядом ZE пропорционально zZE, а энергия тормозного излучения, определяемая квадратом ускорения, будет пропорциональна z2Z2E2/m2. Следовательно, энергия тормозного излучения тем больше, чем больше порядковый номер тормозящего вещества и чем меньше масса бомбардирующей частицы. Для относительно малых энергий β-частиц ионизационные потери невелики. Так, при энергии β-частиц или электронов около 1 МэВ ионизационные потери составляют примерно 95%, потери энергии на упругое соударение - 5%, потери на тормозное излучение ничтожны. Для свинца потери энергии на ионизацию и тормозное излучение
становятся равными при Εβ - 6,9 МэВ. Для алюминия даже при Εβ - 10 МэВ потеря энергии на излучение составляет около 10% потерь энергии на столкновение с ядрами. Для определения пробега β-частиц в различных средах используется эмпирическая формула. Для воздуха:
R = 400 ? Εβ [см]. Для легких материалов (алюминий, стекло):
Rβ = 0,2 Εβ [см] при Ε < 0,5 МэВ;
Rβ = 0,1 Εβ [см] при Ε > 0,5 МэВ.
Удельная плотность ионизации, создаваемая β-частицами, примерно в 1000 раз меньше, чем для α-частиц той же энергии. Для β-частиц с энергией 4 МэВ длина пробега в воздухе составляет 17,8 м, в воде - 2,6 см, в алюминии - 9,8 мм.
При расчете защиты от β-излучения малых энергий, для которых ионизационные потери несущественны, необходимо, чтобы толщина защитного экрана была равна или больше максимального пробега частицы в данном материале. При этом следует использовать материалы с малым Z. При высоких энергиях β-частиц часто необходимо осуществлять защиту от тормозного рентгеновского излучения.
Взаимодействие рентгеновского иγ-излучений с веществом
При прохождении через различные среды пучка рентгеновского или γ-излучения в результате взаимодействия квантов с веществом отмечается уменьшение его интенсивности. Взаимодействие же квантов излучения при этом характеризуется тем, что каждый фотон выбывает из пучка в результате одиночного акта. Следовательно, число выбывающих из пучка фотонов dI пропорционально проходимому ими слою вещества dx:
dI =- μ ? I ? dx,
где μ - коэффициент пропорциональности (называемый коэффициентом ослабления). Εατπτ излучение моноэнергетическое, то значение μ постоянно и интегрирование предыдущего выражения дает:
Ix = I0 ? e -μχ.
x 0
Так как x может быть выражено в сантиметрах, граммах на 1 см2, а также числом атомов или электронов на 1 см2 и произведение должно быть безмерным, коэффициент ослабления μ, иногда называемый эффективным сечением, соответственно выражается в см-1, см2/г, см2/атом и см2/электрон.
Изменение интенсивности излучения в отдельных случаях выражают не через коэффициент ослабления, а через слой половинного ослабления Δ. Слоем половинного ослабления называется такая толщина поглощающей среды, при прохождении которой интенсивность излучения уменьшается в 2 раза. Этот показатель можно рассчитать по следующему соотношению:
В области энергии квантов от 60 кэВ до 50 МэВ имеют место главным образом следующие процессы их взаимодействия с веществом:
• фотоэлектрический эффект, при котором фотон передает всю свою энергию связанному электрону, причем часть энергии расходуется на преодоление связи электрона с атомом, а остальная превращается в кинетическую энергию электрона; этот эффект преобладает при энергиях 1-500 кэВ и уменьшается с увеличением Е;
• рассеяние атомными электронами, в результате которого фотон отклоняется от своего первоначального направления с потерей или без потери энергии; при энергиях, значительно превышающих энергию связи электронов, фотоны рассеиваются так, как если бы электроны были свободны и покоились; в этом случае имеет место эффект Комптона; в области около 1 МэВ он является преобладающим видом взаимодействия;
• образование пар, при котором фотон в поле ядра атома или электрона исчезает и рождается пара электрон-позитрон, полная кинетическая энергия которой равна энергии фотона, уменьшенной на энергию покоя двух появившихся частиц; этот процесс наблюдается при энергии более 1 МэВ и становится преобладающим видом взаимодействия при возрастании энергии.
Указанные три процесса могут происходить независимо друг от друга, поэтому полный коэффициент ослабления μ можно раз-
бить на три части: τ - для фотоэлектрического эффекта, δ - для рассеяния и κ - для образования пар; коэффициент ослабления равен сумме указанных коэффициентов:
На рис. 2 представлены кривые, показывающие изменения τ, δ, κ и μ в зависимости от энергии γ-излучения для вещества с малым Z (А1) и большим Z (РЬ). На рисунке видно, что при небольших энергиях преобладает фотоэлектрическое поглощение, а при больших энергиях ослабление полностью определяется образованием пар. Однако относительное значение каждого из указанных видов взаимодействия меняется в зависимости от атомного номера поглощающего вещества. Для Al (Z = 13) в интервале между 0,3 и 3 МэВ ослабление почти полностью связано с комптоновским рассеянием, а для РЬ (Z = 82) в интервале от 3 до 5 МэВ все три главных процесса играют существенную роль.
По формуле dI = - μΤ-dx можно определять только интенсивность первичного излучения. Однако пренебречь квантами, испытавшими одно- и многократное рассеяние, можно лишь при коллимации пучка излучения, т.е. в случае «узкого пучка». Если в пучке квантов роль рассеянного излучения велика, такой пучок будет называться «широким пучком». Для этого случая интенсивность излучения параллельного пучка за защитой определяется по формуле:
где I0 - интенсивность излучения в той же точке без защиты; Вэ (hv, Z, μχ) - энергетический фактор накопления, который зависит от энергии квантов, порядкового номера поглощающего вещества и величины свободного пробега.
Численные значения энергетических факторов накопления, а также кратность ослабления различных по толщине материалов с учетом этого показателя, которые используются при расчете защиты, можно найти в ряде справочников по защите от ионизирующих излучений.
Рентгеновское и γ-излучения обладают высокой проникающей способностью, и длина пробега их в воздухе достигает сотен метров.
Рис. 2.Изменение τ, δ, κ и μ в зависимости от энергии γ-излучения для вещества с малым Z (а - алюминий) и большим Z (б - свинец)
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|