Сделай Сам Свою Работу на 5

Творения рук человеческих (Естественная история машин) 5 глава





Естественно, что в эту классификацию не укладываются многие механизмы, применяемые в настоящее время при построении машин. Однако перечисленные группы охватывают большинство элементов — звеньев механизмов, которые известны на практике. Рассмотрим эти группы.

Рычажные механизмы. Происхождение стержневых, или рычажных, механизмов очень древнее: их прообразом был рычаг, одно из наиболее старых орудий, освоенных человеком.

Рычаг является как бы удлинением руки человека. Если рассматривать движения, возможные для тела человека, точнее, для его скелета, то окажется, что мы имеем дело с системой связанных между собой стержней. Суставы, связывающие между собой стержни, есть ничто иное, как кинематические пары, и они дают возможность звеньям всей кинематической цепи (скелета) совершать такие движения в пространстве, которые разрешает форма суставов. Суставы различаются между собой. Некоторые из них, как, например, сустав плеча, обеспечивают возможность пространственного движения руки: этот сустав идентичен сферической паре, применяемой в пространственных механизмах. Она называется сферической потому, что в ней одна сфера (головка стержня) вращается в сферической чашке (подшипнике). Другие суставы, например суставы пальцев, дают возможность только плоского движения. Таким образом, тело человека можно рассматривать как механизм очень сложной структуры, состоящий из (условно) прямолинейных звеньев, связанных между собой кинематическими парами. На протяжении двух тысячелетий усилия многих механиков были направлены на то, чтобы построить искусственный механизм, подобный этому.



В XVI—XVII вв. некоторые художники-маньеристы также пытались привести человека к совокупности звеньев, связанных шарнирами, но такие попытки не дали ожидаемого результата. Многого удалось добиться уже в наше время (в последней трети XX в.), когда вплотную занялись робототехникой. Правда, полностью скопировать движение человеческой руки, например, пока ни один робот или манипулятор не может. Рука человека, рассматриваемая как кинематическая цепь, имеет 22 степени свободы, тогда как для манипулятора 7—8 степеней свободы уже труднодостижимы. Все же поиски подобия здесь несомненны. То же самое и в еще большей степени относится к механизмам протезов, которые должны взять на себя действие отсутствующих органов человеческого тела. Правда, и теоретически и даже практически можно построить механизм, кинематика которого допускала бы 22 степени свободы и даже выше, но создание системы управления всеми этими звеньями, и притом так, чтобы в результате получалось одно определенное и точное движение, представляет собой непреодолимую (во всяком случае для настоящего времени) трудность. Иначе говоря, можно получить скелет без мускулов!



Несмотря на свое древнее происхождение, рычажные механизмы развивались чрезвычайно медленно. С известной степенью приближения к ним можно отнести ось с коленом — привод ворота. От этого колена, как уже отмечалось, ведет свое начало коленчатый вал, нашедший применение в двигателях внутреннего сгорания.

Нужно сказать, что все механизмы, и в первую очередь рычажные, выполняли какую-то определенную задачу: они воспроизводили те движения, которые умел выполнять человек. Но не просто воспроизводили (если бы это было так, то в них не было бы нужды), а придавали этим движениям новое качество — либо увеличивали, либо, наоборот, уменьшали скорость, а зато приумножали силу... К понятию работы ученые пришли путем многих и длительных размышлений в течение последних столетий, но сущность закона: то, что «выигрываем в силе, проигрываем в пути», была известна еще с античных времен, а возможно, и раньше.

В составе машин рычажные механизмы появляются относительно поздно. Во второй четверти XIII в. архитектор Виллар де Оннекур собрал в своей «записной книжке» эскизы различных строительных и механических конструкций, с которыми ему пришлось иметь дело. Здесь есть, в частности, чертеж лесопильной мельницы с водяным приводом, основным механизмом которой является шарнирный четырехзвенник. На протяжении следующих четырех столетий было изобретено всего несколько шарнирных механизмов.



Лишь в конце XVIII в. оживляется работа над созданием рычажных механизмов, и связано это было с изобретением паровой машины. В первой части книги уже говорилось о том, что Уатт для своей машины изобрел механизм параллелограмма, благодаря которому возвратно-поступательное движение поршня преобразовывалось в движение рабочих машин. Говорилось и о том, что еще до параллелограмма Уатта был изобретен кривошипно-ползунный механизм для преобразования движения поршня во вращательное движение кривошипа. Так, в состав машин вошли кривошипно-ползунный механизм, основной механизм первых универсальных энергетических машин, и параллелограмм Уатта, одно из самых гениальных изобретений в истории техники. Сам изобретатель писал о нем так: «... хоть я и не особенно забочусь о своей славе, однако горжусь изобретением параллелограмма более, чем любым другим моим изобретением».

Названный механизм работает следующим образом: шток ползуна шарнирно сочленен с серединой тяги, концы которой также шарнирно связаны с двумя рычагами, из которых один шарнирно сочленен с рамой машины, а второй — с балансиром. В конечном счете концы тяги движутся по дугам окружностей, а ее средняя точка приближенно описывает прямую линию. Уникальность этого изобретения заключается в том, что впервые был синтезирован механизм для приближенного преобразования движения. Кроме того, и это весьма существенно, оно послужило отправным пунктом весьма многих теоретических и практических работ, в результате которых стержневые механизмы вышли на одно из первых мест среди органов машин.

В начале второй половины прошлого века великий русский математик Пафнутий Львович Чебышев в ряде статей заложил основы синтеза рычажных механизмов для точного и приближенного преобразования движения. Среди многих изобретенных им механизмов был и первый шагающий механизм. С этого времени начинается быстрое развитие рычажных механизмов: к концу века они насчитываются уже сотнями.

Все рычажные механизмы состоят из рычагов — звеньев, сочлененных между собой шарнирами, кинематическими парами. Правда, в механизмах этого типа шарнир встречается не только в «чистом» виде, но и в виде ползунка, поступательно движущегося по прямой линии звена (например, поршня). Но поскольку движение по прямой линии равнозначно движению по окружности бесконечно большого радиуса, то и этот случай можно рассматривать как движение шарнира (точнее, отрезка шарнира). И шарнир, и сферический шарнир встречаются как в строении органов человека и животных, так и в структуре механизмов. Можно найти некоторую аналогию и для движения ползунка: очень многие технологические операции, выполняемые вручную, включают поступательное движение по прямой, некоторые из них имеют чрезвычайно древнее происхождение, например строгание дерева. Но развитие рычажных механизмов пошло в сторону умножения числа звеньев и кинематических пар, ведь изучались в основном замкнутые кинематические цепи, а разомкнутые цепи привлекли внимание лишь во второй половине XX в.

Нужно отметить еще одно важное положение, которое относится не только к рычажным механизмам, но и ко всем другим: в первом приближении звенья считаются абсолютно жесткими и неизменяемыми, неизменными считаются и расстояния между центрами шарниров. На самом же деле все обстоит не так. Механизмы сооружаются из реальных материалов, поэтому звенья имеют большую или меньшую упругость, а в результате износа размеры их меняются. Как бы точно мы ни старались выполнить их размеры, абсолютная точность остается недостижимой. Благодаря трению, которое обязательно возникает во время относительного движения звеньев, меняются размеры самой кинематической пары и зазор в ней растет. Все это приводит к определенному искажению формы движения, и инженер, проектирующий механизм, должен учесть все эти обстоятельства.

Может случиться, что одно звено связано не с одним звеном, а с несколькими. В этом случае считается, что существует не одна кинематическая пара, а несколько, по числу подсоединенных к исходному звену звеньев.

Как мы увидим далее, рычажные механизмы имеют очень важное значение при анализе и синтезе любых механизмов, поэтому на этот вид механизмов обращают особенное внимание.

Фрикционные механизмы. Далее мы рассмотрим другой вид механизмов, а именно механизмы, основанные на принципе колеса. Сюда относятся фрикционные, зубчатые и кулачковые механизмы (кроме того, колесо входит в состав и иных групп механизмов).

Использование вращательного движения человеком начинается относительно поздно. Вероятно, древнейшие постройки вынудили человека при транспортировке тяжелых глыб камня использовать бревна, очищенные от веток, в качестве катков. Произошло это между IV и Х тысячелетиями до н. э., причем это изобретение, равно как и многие другие, принадлежало разным племенам и народам и относится поэтому к разным временам.

Колесо появляется не ранее этого времени. Сперва колеса для повозок представляли из себя деревянные диски, жестко насаженные на ось. Можно сказать, что они были прообразом фрикционного механизма, который служит для передачи движения за счет сил трения между его звеньями. Очевидно, ремесленник имел уже в своем распоряжении металлическую пилу, с помощью которой он и выделывал из ствола диски — колеса. Спустя тысячелетие было изобретено колесо со ступицей, насаживающееся на неподвижную ось. Несколько позже появились колеса со спицами. Это дало возможность создать боевую колесницу с колесами большого диаметра. Почти одновременно с появлением повозки на колесах с небольшим опозданием появляется гончарный круг, в начале I тысячелетия до н. э. появляются блоки и в середине тото же тысячелетия — полиспасты. Изобретение этих подъемных приспособлений знаменовало также расширение функций колеса и создание на его базе новой группы механизмов с гибкими звеньями (впрочем, об этом речь пойдет ниже).

Зубчатые механизмы. Со временем изобретения мукомольных мельниц—первых машин в истории человечества, связано появление зубчатого колеса как важнейшего элемента многих механизмов. Первые передачи этого типа были цепочными — зубья произвольной формы врезались в обод. Позже зубья стали вырезать вручную из тела заготовки — деревянного или металлического диска. На рубеже новой эры механики знали о зубчатых колесах довольно много. Так, уже были известными сложные зубчатые механизмы — редукторы, включающие несколько пар зубчатых колес и червячную пару. Естественно, что никакой разницы между обычным и «червячным» колесом пока еще не замечали.

Как уже говорилось, использование водоподъемного колеса не ограничивалось только первоначальной задачей. Оно не только служило двигателем для мукомольных мельниц, но и приобрело новое качество универсального промышленного двигателя. В связи с этим усложняются системы передач и создаются новые. Так, в частности, возник кулачковый механизм, основной деталью которого остается все то же колесо, но с единственным зубцом — кулачком. Так создается привод мельниц, механизмы которых работают ударным действием, как, например, различные толчеи, кузнечные молоты и т. п.

Кулачковый механизм сохраняет свои элементарные формы на протяжении пяти веков — с XIV по XVIII в. Объясняется это тем, что скорости движения машин, в состав которых входил этот механизм, были крайне малыми и кулак, сделанный в полном смысле этого слова «из-под топора», функционировал вполне удовлетворительно.

Таким образом, технологические установки того времени, мельницы имели, как правило, деревянные зубчатые и кулачковые приводы. Но после того как семейство машин и механизмов пополнилось механическими часами, происходит быстрое развитие зубчатых механизмов. Мы видели, что уже в античные времена были известны редуктор и червячная передача. Последняя, по всей видимости, была изобретена еще Архимедом, а усовершенствована Леонардо да Винчи, который понял ее недостаток. Дело в том, что при уменьшении хода нарезка становилась слишком тонкой и непрочной и не могла выдерживать больших нагрузок. Ученый решил эту инженерную задачу, сделав нарезку очень крутой, в результате чего давление распределялось между несколькими ходами. Таким образом, получились два решения проблемы — вводилась червячная передача, состоящая из червяка-винта и червячного колеса, наклон нарезки которого соответствовал наклону червячной нарезки. Вторым решением той же задачи стало введение пары винтовых колес.

Часовые мастера очень скоро заметили, что от качества зубчатых колес зависит и точность хода часов, и длительность их службы: не удивительно, что в XVI в. часы больше времени проводили у часовщиков, чем у хозяина. Изобретение маятниковых часов еще больше обострило эту проблему, оказалось, что форма зубьев играет важнейшую роль в зацеплении. Нужно было найти такие кривые, согласно которым колеса могли бы катиться друг по другу с минимальным трением. Пришлось прибегнуть к помощи геометрии, и в конце XVII в. замечательный голландский ученый Христиан Гюйгенс, а также французские геометры Жирар Дезарг и Филипп де Лагир пришли к выводу, что зубья колес следует профилировать по циклоидальным кривым.

Пусть окружность катится без скольжения по прямой линии. Тогда любая точка, жестко связанная с окружностью, опишет кривую, называемую циклоидой. Если та же окружность катится без скольжения по внешней стороне другой окружности, то любая ее точка опишет эпициклоиду. Если же меньшая окружность находится внутри большей и катится по ее внутренней стороне, то кривая, описанная произвольной ее точкой, будет называться гипоциклоидой. При построении зубчатого зацепления соблюдается условие, что начальные окружности катятся друг по другу без скольжения. Начальные окружности делятся на целое число шагов каждая, а зубья строятся таким образом, чтобы часть зуба оказывалась выше начальной окружности, а другая ниже ее. Первая часть называется головкой зуба, а вторая—ее ножкой. Рабочие стороны — профили головки и ножки — строятся по циклоидальным кривым.

Такое зацепление оказалось весьма удобным для часовых механизмов, где сохраняется неизменное расстояние между осями двух зацепляющихся колес: вспомним, что часы изготавливаются на «таком-то количестве камней», при этом чем больше «камней», тем лучше. Камнями в часовых механизмах называются каменные подшипники для вращающихся осей колес. Это же циклоидальное зацепление в XVIII в. и в первой половине XIX в. применялось при построении машин. Но оказалось, что здесь циклоидальное зацепление не совсем пригодно. Дело в том, что вследствие трения срабатываются детали, расстояние между центрами колес изменяется и колеса перестают правильно зацепляться друг с другом: постепенно происходит срабатывание колес, увеличиваются зазоры между зубьями и колеса выходят из строя. Не случайно к этому времени ученые разработали другой тип зацепления. Предложил его великий математик Леонард Эйлер.

Только что мы катили окружность по прямой линии. Теперь выполним обратную операцию: прокатим прямую линию по окружности. Эту операцию можно воспроизвести следующим образом: прикрепим карандаш к кончику нитки, намотанной на катушке, и будем сматывать нить, сохраняя ее в натянутом состоянии. Тогда кончик карандаша вычертит на бумаге кривую линию, которая называется разверткой круга, или эвольвентой.

Как оказалось, эвольвентное зацепление при построении машин имеет существенное преимущество перед циклоидальным: оно допускает колебания в расстоянии между центрами обоих зацепляющихся колес, не нарушая при этом правильности зацепления. Это стало очень важным при переходе от индивидуального построения машин к серийному, а затем и к массовому.

Получившиеся при этом отклонения в размерах не нарушали правильности хода машины.

Вместе с развитием машин убыстряется и развитие зубчатых механизмов. Подобно тому как в животном мире развитие органов направляется к совершенствованию их в том отношении, чтобы они могли наилучшим образом выполнять свои функции, развиваются и совершенствуются и механизмы машин. Существенное различие заключается в том, что в животном мире развитие происходит весьма длительное время и оно является следствием изменения условий жизни данного вида, тогда как в развитии органов машин проявилась целенаправленность их изобретателей.

Зубчатые механизмы на протяжении своего двухтысячелетнего существования были известны техникам в целом ряде вариантов, число которых росло. Однако никакой попытки установить какие-либо связи между отдельными вариантами не производилось. Даже в курсе построения машин Ланца и Бетанкура, по существу, первом учебнике теории механизмов, зубчатые механизмы появляются в различных разделах классификационной таблицы. Этой же непоследовательности в классификации придерживался и Роберт Виллис, который внес в систему механизмов определенный порядок. В середине прошлого века он сформулировал и доказал основную теорему зацепления — общий закон, устанавливающий связь между скоростями вращения колес и их параметрами. Этот закон утверждает, что нормаль в точке зацепления двух колес делит линию центров на части, обратно пропорциональные угловым скоростям. Тогда же была издана книга французского ученого Теодора Оливье «Геометрическая теория зацеплений», в которой он показал, что правильно зацепляться могут колеса при любом расположении осей вращения. В качестве общего способа получения зацеплений любого вида был предложен способ огибающих поверхностей. Наиболее существенным было то, что здесь были введены пространственные зацепления.

При непрерывном совершенствовании зубчатых механизмов увеличивается их ассортимент, повышается точность изготовления зубчатых колес. Сочетание двух колес уже образует механизм, но с помощью одной такой пары можно только в небольшой степени снизить угловую скорость вращения или, наоборот, увеличить ее. Но развивающееся машиностроение требовало устранения подобного недостатка, и на протяжении века происходит развитие Специальных агрегатов-редукторов, предназначенных для этой цели. В сущности, редукторы в своей элементарной форме существовали и раньше. Уже в I в. был известен многоступенчатый редуктор, включавший и червячную передачу. Известна была и винтовая передача—кинематическая пара винт — гайка. Коническая передача — передача вращения между двумя осями, расположенными перпендикулярно одна относительно другой, была известна и значительно раньше: она являлась главным передаточным механизмом водяной мельницы. Самая последняя из «классических» систем зубчатых колес — планетарная передача — была изобретена в XVIII в. в целях преобразования поступательного движения поршня паровой машины во вращательное движение шкива.

Мы видели, что уже в XVII—XVIII вв. ученые нашли методы профилирования зубчатых колес. Несмотря на это, еще больше столетия после исследований Эйлера в этом направлении пары колес выполнялись индивидуально, и для замены изношенного колеса его следовало выполнять «по месту».

По словам Чебышева, делая различные предположения относительно вида зуба одного колеса, можно было найти бесчисленное множество различных видоизменений зубчатых колес, но из всех этих видоизменений на практике употреблялись очень немногие.

Таким образом, несмотря на то что вопрос о профилировании зубчатых колес был уже давно решен в трудах механиков, практики все еще не вполне представляли себе его сущность. Объясняется это тем, что значительная часть продукции машиностроительных заводов все еще была занята индивидуальным производством машин по заказам и колеса не были стандартизированы: заводы и не были заинтересованы в этом, они не хотели терять заказов на производство запасных частей для поставленных ими ранее машин. Однако вскоре уже возрос спрос на серийную и массовую продукцию. Понятие зубчатого зацепления первоначально применялось лишь для обозначения числа зубьев колес.

В последней четверти прошлого века производство колес полностью переходит на научную основу: колеса стандартизируются, и возникает возможность заменять изношенные колеса соответствующими запасными колесами. Постоянно развивается и совершенствуется ассортимент колес, и для того чтобы удовлетворить всевозрастающим требованиям машиностроения, изобретаются новые типы колес, имеющие более совершенные механические характеристики.

Как мы уже говорили, подавляющее большинство колес профилируются по эвольвенте, и в сущности, в этом отношении единственным путем улучшения их качества было совершенствование их механической обработки и износоустойчивости. Лишь в середине XX в. советский ученый М. Л. Новиков изобрел новый тип зацепления, получив на него авторское свидетельство. Тем самым был предложен принципиально новый класс пространственных зацеплений с точечным контактом для передачи с различным взаимным положением осей обоих зацепляющихся колес.

Но подобно тому как кости человеческого скелета служат человеку не по одиночке, но в сочетаниях, сочленяясь попарно, точно так же и зубчатые колеса (равно как и все прочие звенья механизмов) не имеют самостоятельного бытия и лишь в паре образуют механизм. Поэтому и вся история зубчатых зацеплений, начавшаяся в середине первого тысячелетия до нашей эры,—это история зубчатых механизмов. Начиная от элементарных сочленений двух колес, как это было в древнейших водяных мельницах и лебедках, сочленения колес умножаются: уже в первом веке нашей эры известно несколько типов развитых редукторов. Сейчас описано около семисот зубчатых механизмов. При этом все чаще появляются новые типы механизмов, в которых комбинируются не только зубчатые сочленения, но и зубчатые с рычажными, с винтовыми и другими типами механизмов.

Кулачковые механизмы. Как уже говорилось, кулачковые механизмы сходны с зубчатыми, т. е. их можно рассматривать как зубчатые колеса с одним зубом в сочетании с обычным зубчатым колесом. Такие механизмы и существуют в действительности, их применяли в некоторых типах вычислительных машин. Все же основная схема кулачкового механизма—это вращающееся звено, кулачок и второе звено, приводимое в движение кулачком, которое или движется поступательно по прямой линии между двумя крайними точками, или закреплено в одной точке и качается около нее, описывая дугу.

Особенное развитие получили кулачковые механизмы, когда появились технологические мельницы. Если в случае обычных мукомольных мельниц вращательное движение водяного колеса при помощи несложной передачи преобразовывалось во вращательное движение жернова, то теперь задача усложняется, поскольку вращательное движение надо преобразовать в поступательное. Это достигается следующим образом: к вращаемуся деревянному валу крепится деревянный же кулак, который на протяжении части своего оборота входит в зацепление с другим кулаком, прикрепленным к вертикально движущемуся штоку. Когда оба кулака входят в зацепление, шток поднимается на определенную высоту, а затем при разрыве зацепления падает, а прикрепленный к нему боек производит технологическую операцию. Так работает мельница-толчея для производства пороха, бумаги, крупы. Несколько по-другому работает кузнечный молот, «рукоятка» которого посажена на ось, закрепленную в подшипниках, и опускается кулаком. При этом боек, посаженный на противоположный конец рукоятки, поднимается на определенную высоту и падает, когда кулак выходит из зацепления с рукояткой.

Существовало еще несколько схем кулачковых механизмов, соответствующих технологическим операциям, для производства которых были устроены разного типа мельницы. В некоторых случаях от одного водяного или ветряного двигателя колеса приводилось в движение несколько технологических установок. В этом случае вводились промежуточные механизмы распределения.

Изобретение двигателя внутреннего сгорания и необходимость обеспечить точную последовательность тактов работы двигателя вызвали необходимость решить задачу газораспределения с помощью кулачкового механизма. Кулачковый механизм прошлого века уже лишь отдаленно напоминает своего многовекового предшественника: большие скорости двигателя требуют точности от всех составляющих его звеньев, в особенности от формы рабочей поверхности кулачка, его профиля. В дальнейшем такой механизм становится одним из ведущих при создании машин автоматического действия: отдельные операции выполняются при помощи кулачковых механизмов, действующих в соответствии с так называемой циклограммой, т. е. законом движения ведомого звена.

Несмотря на различия в применении кулачковых механизмов, их схема, в сущности, остается все той же, которая была выработана на протяжении веков: ведущее звено — кулачок, вращающийся около своей оси, приводит в движение ведомое звено, или движущееся по прямой линии, или качающееся около некоторой оси. Теоретически можно при помощи кулачкового механизма осуществить самые различные законы движения, однако на практике не все они оказываются одинаково приемлемыми: пользуются лишь теми из них, которые обеспечивают более простую технологию обработки профиля кулачка и удовлетворяют всем требованиям к построению механизма.

Как правило, движение ведомого звена механизма (толкателя или коромысла) соответствует четырем фазам: его подъему, так называемому выстою в верхнем положении, спуску, выстою в нижнем положении (оба выстоя или один из них могут и отсутствовать). Профиль кулачка выполняется в соответствии с этими фазами. При выстоях ведущее звено в течение некоторого угла поворота кулачка остается неподвижным. Следовательно, соответствующий участок профиля описывается дугой окружности. Профили же подъема и спуска выполняются по некоторым кривым, которые должны плавно переходить в участки выстоев. В противном случае ведомое звено, а следовательно, и выполняемая им технологическая операция будут испытывать удары, что, вообще говоря, недопустимо.

Иногда технологическая операция предполагает выстой некоторой длительности в одном положении, а затем передвижение с большой скоростью в следующее положение. Для этого был изобретен простейший механизм, так называемый мальтийский крест, который состоит из крестообразной основы с равномерно расположенными радикальными пазами, кривошипа с пальцем и неподвижного звена, обязательного для каждого механизма. При вращении кривошипа палец входит в паз креста и поворачивает его на угол, обусловленный заданной схемой. После выхода пальца из паза крест останавливается до тех пор, пока палец не начнет входить в следующий паз, тогда движение возобновляется. Тем самым обеспечивается прерывистый характер движения ведомого звена.

В качестве примера можно привести обработку деталей на многошпиндельных автоматах одновременно в нескольких позициях, число которых равно числу шпинделей. Все это дает возможность обрабатывать сложные детали путем совмещения переходов операций, при этом обеспечивается высокая производительность обработки. Естественно, что все это можно было сделать и с помощью кулачкового механизма, однако механизм мальтийского креста оказывается более простым, более надежным и долговечным в работе. Поэтому в некоторых случаях такой механизм просто незаменим.

Существует много вариантов мальтийского креста: он выполняется с внутренним и внешним зацеплением, с различным числом и расположением пазов, что, естественно, зависит от выполняемой механизмом операции (наименьшее число пазов равно трем). На практике применяют кресты с числом пазов, равным 4, 6, 8; наибольшим числом пазов считается 15. Как выяснено, кресты внутреннего зацепления имеют некоторые преимущества по сравнению с крестами внешнего зацепления. *

Совершенствование мальтийского креста было определено развитием кинотехники и некоторых классов машин-орудий. В процессе применения этого механизма он видоизменяется, приспосабливается к новым технологическим условиям и приобретает новую форму.

Мы рассмотрели, таким образом, наиболее значительную группу механизмов, преобразующих вращательное движение во вращательное непрерывное, во вращательное с остановками, в возвратно-поступательное. Их далеким «предком» было, очевидно, очищенное от веток дерево, при помощи которого облегчался перенос грузов. Таким образом, форма вращающегося тела была заимствована у природы и затем подвергнута дополнительным изменениям для выполнения определенной работы. Так возникает новое пополнение движений, возможных для человека, новый орган, который, развиваясь, порождает механизмы, описанные выше.

Гибкие передачи. Во второй половине первого тысячелетия до нашей эры появляется еще один механизм, прообразом которого является простой блок, известный еще ассирийцам. Блок порождает полиспаст. А отсюда уже недалеко до гибкого привода, когда вращение передается между осями, расположенными на некотором расстоянии друг от друга. Гибкий элемент в простейшем случае является бесконечной нитью, направления нитей могут пересекаться, и в этом случае диски, которым передается движение, вращаются в противоположном направлении. В более сложных случаях можно получить с помощью гибкой передачи и различные виды возвратно-поступательного движения.

Средневековая техника пользуется различными типами бесконечной передачи, а когда интерес к машинам возрос в значительной степени, она уже применялась довольно часто, причем не только отдельно, но и в сочетании с другими типами передач, например с зубчаткой. Так, Джероламо Кардано применил перекрещивающуюся гибкую передачу в сочетании с зубчатым механизмом, причем учел и то обстоятельство, что в перекрещивающейся передаче угол обхвата шкива канатом больше, чем в обычной, а следовательно, больше и трение, а это позволяло избежать или, точнее, уменьшить проскальзывание.

Мы уже упоминали труды жившего в Саксонии профессора греческого языка Георга Бауэра. Фамилия его, очевидно, намекала на его крестьянское происхождение («бауэр», по-немецки,—«крестьянин»), и поэтому он пользовался ее латинским переводом (Агрикола), что, впрочем, означало то же самое. По-видимому, греческий язык был ему не по душе, он оставил преподавание и начал изучать медицину, а затем минералогию и горное дело. Он написал несколько книг, из которых важное значение получило его сочинение «Горняк или о металлических делах», в котором он досконально изложил технологию горного дела и описал грузоподъемные машины, которые тогда применялись. Среди других он описывает и гибкие передачи. Так, в горном деле зачастую надо передать движение с верхнего горизонта на нижний, для этого пользовались цепной передачей, которая в условии рудника надежнее и долговечнее канатной. Использовались также разомкнутые гибкие передачи, цепные и канатные, применявшиеся в подъемных кранах.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.