Сделай Сам Свою Работу на 5

Творения рук человеческих (Естественная история машин) 4 глава





Проводилась механизация и других сельскохозяйственных работ. Появились канавокопатели, машины для уборки овощей. В конце 30-х годов в США попытались создать свеклоуборочные комбайны. Первый патент на машину для уборки хлопка был выдан в США еще в 1850 г., но дело оказалось настолько трудным, что даже в конце 30-х годов хлопок практически повсеместно убирался вручную.

Быстрый рост машиностроения поставил новые задачи перед металлургией: советские заводы начали осваивать производство тяжелой металлургической техники. Быстрыми темпами закончилась реконструкция Старокраматорского машиностроительного завода, вступила в строй первая очередь Новокраматорского завода. В 30-х годах на этом заводе для «Запорожстали» был построен мощный обжимной двухвалковый прокатный стан, предназначенный для проката слябов. Одной из самых больших современных машин является блюминг — мощный обжимной прокатный стан, на котором можно прокатывать слитки весом до 20 т. Первый советский блюминг, изготовленный на Ижорском заводе, начал работать на Макеевском металлургическом заводе.

30-е годы — это время резкого скачка в развитии кузнечно-прессового оборудования, без которого было бы невозможным массовое производство машин. Одно из ценнейших достоинств этого оборудования — существенная экономия труда и металла: детали, изготовленные на прессах, почти не требуют дополнительной станочной обработки. Строительство мощных прессов началось в Германии и США в конце 20-х годов. В нашей стране в годы первых пятилеток удельный вес прессов и механических молотов отечественного производства значительно возрос. Был освоен выпуск паровых молотов с весом падающих частей 1—3 т, эксцентриковых прессов с усилием до 500 т и кривошипных прессов до 900 т, а также ножниц для резки металла, горизонтально-ковочных машин.



Естественно, что для приведения в действие таких мощных машин необходима была соответствующая энергетическая база. Основной энергетической машиной стала турбина. Габариты турбин и их мощность непрерывно росли. Так, еще в 30-е годы на Ленинградском металлическом заводе была построена турбина мощностью 100 МВт.



Но каким бы крупномасштабным и быстрым ни была машинизация производства, до полного вытеснения трудоемких и тяжелых работ, выполняемых вручную, было еще очень и очень далеко. Особенно это относилось к рудной и угледобывающей промышленности, строительству, металлургии, машиностроению. Проблема эта с каждым годом становилась все острее. Необходимо было обеспечить производство безотказно действующим, надежным и безопасным механизированным инструментом. К той же проблеме примыкала и задача создания внутризаводского и внутрипостроечного транспорта. В горнозаводском производстве, кроме того, надо было механизировать и основные технологические процессы.

Механизация в горном деле быстро развивалась в годы первой и второй пятилеток. Был налажен выпуск врубовых и навалочных машин, конвейеров, шахтных лебедок и насосов, буровых машин. Создание врубовых машин и на их основе угольных комбайнов было дальнейшим шагом вперед. Практически к 40-м годам советская угледобывающая промышленность по степени механизации заняла первое место в мире.

Подобно горной технике, производство строительных и дорожных машин в значительной степени было поставлено в годы первых пятилеток. Отечественные заводы освоили производство бетономешалок, растворомешалок и приступили к серийному выпуску экскаваторов.

В конце первой пятилетки на строительстве появились ленточные транспортеры, сперва импортные, а затем и отечественного производства. На ряде заводов осваивалось производство пневматических компрессоров, что позволило повысить уровень механизации трудоемких работ и обеспечило их безопасность. Был создан также электромеханический инструмент, при помощи которого были механизированы многие трудоемкие работы на строительстве и в машиностроении.



Началась механизация тяжелых и трудоемких работ также на транспорте. Появляются путеукладчики и балластировочные машины, осваиваются и внедряются различные механизмы.

Структура машин и механизмов в 30—40-е годы претерпевает некоторые изменения: в качестве структурных элементов в их состав, кроме жестких и гибких элементов, начинают входить жидкие, газообразные, электромагнитные, а затем и электронные элементы.

Вычислительные машины — прообраз искусственного мозга. Вторая мировая война внесла значительные коррективы в развитие машиностроения. Инженерная мысль работала в основном в направлении совершенствования средств ведения войны, но вместе с тем развивались и такие направления машинной техники, которая могла с неменьшим успехом работать на мирном поприще.

Известный американский математик Норберт Винер, которого принято считать одним из создателей кибернетики, писал о том, что в начале войны первейшей задачей было спасти города от сокрушительных атак с воздуха, поэтому зенитная артиллерия была одним из первых объектов научных исследований, особенно когда артиллерия была соединена с засекающим аэроплан устройством — радаром. Радарная техника, помимо изобретения новых своих собственных форм, использовала те же формы, что и уже существовавшая радиотехника. Кроме обнаружения самолетов при помощи радара, было необходимо сбивать их. Это выдвинуло задачу управления огнем. Большие скорости вызывали необходимость вычисления элементов траектории зенитных снарядов машиной и придания самой машине определяющей упреждение цели, коммуникативных функций, которые прежде выполнялись людьми.

В результате к концу войны в США уже были созданы первые модели электронно-вычислительных машин, а через несколько лет машины такого типа появились и в нашей стране. Тем самым была решена одна из важнейших задач современной техники, позволившая непосредственно перейти к решению сложных проблем автоматизации технологических процессов, производства и управления и сооружения машин нового типа, характерных для современной научно-технической революции.

Таким образом, машины начали овладевать еще одной функцией, свойственной человеку: они начали выполнять некоторые логические операции. За короткое время эти машины претерпели существенные изменения — они уменьшились в размерах, во много раз выросла скорость вычислительных операций и т. д. Электронные вычислительные машины могут управлять производственным процессом, экономикой предприятия, решать сложные математические задачи, рассчитывать полет самолетов и космических кораблей — словом, с огромной скоростью решать такие задачи, на которые множеству вычислителей понадобилось бы потратить годы, и даже такие задачи, которые вообще лежат вне пределов возможностей человека из-за чрезвычайной длительности и сложности расчетов.

Но и этим не ограничиваются возможности ЭВМ: они вводятся в структуру машин, приборов, технологических установок, чтобы на них и здесь возложить управленческие функции. Таким образом, ЭВМ иногда полностью, иногда частично взяли и здесь на себя то, что испокон веков было обязанностью человека работника.

В 70-х годах в нашей стране была построена машина для диагностики врожденных пороков сердца. Она работала по методу сопоставления того, что заложено было создателями в ее память, с данными, полученными при обследовании больного. С этой машины началось внедрение ЭВМ в медицинскую практику.

Овладение быстродействующими вычислительными машинами, внедрение их в жизнь, науку и производство, создание совершенно новых классов машин, заменяющих некоторые психофизиологические функции человека, являются одними из составляющих глубокого революционного процесса, охватившего весь мир и называемого научно-технической революцией. Эта революция характеризуется прежде всего такими особенностями, как автоматизация производства, развитие новых направлений в энергетике (строительство атомных электростанций), выход в космическое пространство, создание новых конструкционных материалов с наперед заданными свойствами, становление генной инженерии, бионики, информатики, повсеместное внедрение ЭВМ, превращение науки в производительную силу. Едва ли не все эти особенности тесно связаны с машиностроением, и роль последнего как ведущего направления в развитии народного хозяйства постоянно возрастает.

Мы видели, что машины эволюционируют, приобретают новые свойства. Однако этот процесс не только эволюционный. Он сплошь да рядом сопровождается изменениями революционного характера. Взять, к примеру, транспорт. Паровозы, безраздельно господствовавшие на протяжении полутора веков, освободили место тепловозам и электровозам. То же самое произошло и с паровыми двигателями, которые уступили место двигателям внутреннего сгорания. Затем возникли дизели, турбины, турбореактивные, реактивные и ракетные двигатели.

В послевоенные годы значительные изменения произошли в авиации: поршневые двигатели уступили место реактивным, что дало возможность поднять параллельную высоту полета («потолок») до 35 км, скорость полета — до 2500 км/ч. Естественно, что при этом менялся не только двигатель, но и весь самолет, этого требовали законы аэродинамики, условия повышения безопасности полетов, соображения экономики и т. д. Наряду с реактивными и турбореактивными двигателями стали использовать и турбовинтовые, высокоэкономичные и надежные, обеспечивающие высокую скорость и значительную дальность полета. В 50-х годах был создан первый турбовинтовой двигатель, занявший одно из ведущих мест в гражданской авиации.

Тогда же начался серийный выпуск турбореактивного лайнера Ту-104 конструкции Туполева. Этот лайнер на высоте 10 км развивал скорость 800 км/ч.

В 60-е годы коллектив под руководством Олега Константиновича Антонова создал самый большой в мире транспортный самолет АН-22 («Антей») — цельнометаллический моноплан с высокорасположенным крылом, на котором установлены четыре турбовинтовых двигателя, общая мощность которых сравнима с мощностью всей энергетики дореволюционной России. Естественно, что управление такими гигантами возможно лишь при очень высокой степени автоматизации.

Подобное явление наблюдается и в других отраслях народного хозяйства, где высокогабаритные машины зачастую оказываются необходимыми. Большая машина не только экономичнее соответствующего числа малых, но она тоже выполняет равную работу за меньшее время, кроме того, может выполнить и такую работу, которая находится вне пределов возможности малых. Так, одноковшовые экскаваторы изготовляются с объемом ковша до 6 м 3; проектируются модели с ковшами 12—20 м 3. Вскрышные экскаваторы сооружаются с емкостью ковша от 6 до 154 м3. Ходовое оборудование у наиболее мощных моделей — четыре спаренные гусеницы. Многоковшовые экскаваторы также имеют гусеничный, а иногда и шагающий ход. В частности, в роторных экскаваторах рабочий орган — ротор — имеет до 12, а иногда до 24 ковшей большой емкости. Эти экскаваторы могут перетащить грунт на расстояние до 150 м с глубиной копания до 25 м. В 60-е годы на Новокраматорском заводе был начат выпуск роторных экскаваторов производительностью 3000 мЭ/ч, а в следующем десятилетии — уже 5000 мЭ/ч.

Нужно отметить, что в экскаваторы, как, впрочем, и в некоторые другие машины, начали вводиться два важных усовершенствования. Это гидропривод и шагающий ход. Гидравлические механизмы имеют ряд преимуществ по сравнению с механическими и электромеханическими передачами: с их помощью можно получить быстродействующие системы большой мощности и высокой точности. Поэтому они находят себе применение на самолетах, на судах с подводными крыльями, на ракетах, на прессах, на металлообрабатывающем оборудовании, на землеройных машинах.

Росли габариты и энергетических машин. В конце 50-х годов в Харькове были сооружены паровые турбины мощностью 100 МВт. Эти Турбины успешно работали на отечественных тепловых электростанциях. Но вскоре выяснилось, что необходимы еще более мощные машины, и вот создаются турбины, мощность который за одно десятилетие возросла в 2,5—5 раз, а в 70-е годы мощность паровых турбин в одном агрегате увеличилась уже в 13 раз.

Растет также мощность гидротурбин, при этом наблюдается тенденция к снижению веса и одновременно к повышению технико-экономических показателен машины. Уже в 70-е годы мощность гидравлических турбин превысила 600 МВт в агрегате.

Все современные высокомощные и высокопроизводительные гигантские машины соответствуют потребностям конкретного периода в развитии общества. Однако увеличение габаритов, веса, мощности, скоростей не может быть беспредельным. В какой-то момент параметры машины войдут в противоречие с ее производительностью, экономичностью, стоимостью и возможностями эксплуатации. Тогда появится решение проблемы, основанное на новых принципах, будет создана новая машина или предложен новый технологический процесс.

В середине века были созданы машины, при помощи которых человек вышел в космическое пространство. Первый советский искусственный спутник Земли, первый полет человека в космос свидетельствовали о том, что возможности машин еще не исчерпаны. Правда, эти машины не похожи на машины прошлого века, которые, в свою очередь, также значительно отличались от своих «предков», хотя и не столь коренным образом. Меняются и принципы действия, и механизмы, из которых собрана машина, и материалы, из которых она изготовлена, ее форма и внешний вид. Бывает и так, что последнее оказывается решающим, старое содержание прячется под новой формой. Но какими бы разнообразными ни были машины и какие бы отрасли промышленности они ни обслуживали, всем им свойственно то, что они заменяют человека в какой-либо из его функций. Они заменяют или его физическую силу, или его профессиональное умение, или какую-либо из его физиологических функций, или его умственную деятельность. Важно еще и то, что с помощью машин можно воспроизвести не только те функции, которые присущи человеку, но и такие, которые ему не свойственны, но они есть у других представителей животного мира, например у дельфинов или пчел...

Говоря об экскаваторах, мы упоминали, что некоторые из них являются «шагающими». Шагающим машинам принадлежит большое будущее: такая машина может пройти и по бездорожью, и по пересеченной местности.

Мы только что говорили о машине как об искусственном «организме», способном заменять некоторые человеческие функции. Но она может заменить и целую группу функций и стать, таким образом, некоторым подобием человека.

Эта идея не нова. Мечты о создании механического человека встречаются в греческой мифологии, в сочинениях средневековых алхимиков и в трудах философов-просветителей. Еще два века назад многие механики работали над созданием автоматов, которые в большей или меньшей степени напоминали человека

и животных.

Создание систем, в чем-то схожих с человеком, стало возможным, когда высокой степени совершенства достигли ЭВМ. Роботы и манипуляторы появились в промышленности в первые годы второй половины века. Сначала они применялись там, где непосредственное участие человека в рабочем процессе было невозможным или опасным, — в атомной энергетике, в космосе, на морских глубинах, в некоторых химических производствах.

Только три десятилетия назад в США был выдан патент на автомат, который впервые назвали промышленным роботом, там же были всего за несколько лет построены первые образцы таких машин, вскоре попавшие в Японию. Теперь Япония ведущая страна по производству промышленных роботов, в котором заняты более ста фирм.

В нашей стране созданы роботы как универсального, так и специализированного применения. Их конструкции непрерывно совершенствуются. Семейства роботов и манипуляторов постоянно пополняются новыми образцами. Лишь несколько десятков лет отделяет нас от того времени, когда на Луне начала работать советская космическая станция, обладавшая системой искусственного зрения, которая смогла исследовать спутник Земли в непосредственной близости к нему. Американский луноход уже мог передвигаться по поверхности Луны по командам с Земли. В 1970 г. на Луну был доставлен с помощью автоматической межпланетной станции советский самоходный аппарат «Луноход-1», который имел шасси высокой проходимости и принимал команды с Земли. Через три года уже начал работать «Луноход-2» — автоматический аппарат с целым рядом усовершенствований.

Это было началом нового направления техники — космической техники, которая в течение последнего десятилетия развилась в важное универсальное направление.

Вообще же машины автоматического действия — это машины будущего. Постепенно они осваивают все большее и большее число функций человека и живого организма, очевидно, с их помощью будут решены не только специальные задачи машинной техники, но и одна очень важная, общая многим отраслям промышленности задача механизации трудоемких и тяжелых работ, которая до настоящего времени создает разрывы в цепи полной автоматизации производственных процессов.

Мы говорили уже о некоторых аналогиях между миром живых существ и миром машин. Обратим внимание на тот факт, что совершенствование живых существ, приобретение ими новых качеств и переход в «новое состояние» требуют многих миллионов лет. Сам человек развивался не менее двух миллионов лет. Машина же — результат человеческого творчества, напряженной и непрерывной работы мысли и умения целого ряда сменявших друг друга поколений, как уже говорилось, прошла свой путь совершенствования всего за две с половиной тысячи лет.

В настоящее время много работ по обслуживанию человека на производстве и даже в быту переложено на машины. Уже есть основание к общеизвестным «царствам» природы — растительному и животному — добавить «царство» машин.

В последние годы специалисты в области генетики далеко продвинулись в понимании сущности живых средств. Возникло новое научно-техническое направление — генная инженерия, исследующая возможность изменения биологической природы живого существа. Операции генной инженерии по своей сущности в чем-то подобны операциям совершенствования машины: и в том, и в другом случае объект приобретает навые свойства, отсутствующие у исходного.

Еще два века назад естествоиспытатели хотели подойти к животному и к человеку как к машинам. Но о сущности машины ясного представления еще не было, да и о человеке познания были весьма неполными. Поэтому подобным утверждением ставили знак равенства между двумя неизвестными объектами и из этого выводили далеко идущие следствия.

В настоящее время оба объекта — и человек, и машина — изучены значительно лучше. Поэтому попробуем выяснить то общее, что присуще обоим этим объектам, но с другой точки зрения. Принимая во внимание, что машины — это результат интенсивного человеческого труда и человеческой мысли, а также и то, что они создавались как искусственное продолжение (и развитие) того или иного органа человека, можно, стало быть, говорить об их естественной истории. Наш краткий экскурс в эту историю показал, что развитие машин шло, несмотря на кажущуюся хаотичность, по строгим закономерностям. Все излишнее, ненужное, возникающее на протяжении срока такого краткого по сравнению с жизнью человечества отбрасывалось и оставалось в памяти лишь как курьезы, не заслуживавшие серьезного внимания. Впрочем, здесь, как и в других областях человеческой деятельности, случались и ошибки: отброшенные «курьезы» оказывались интересным решением технической задачи, и к ним возвращались, но уже на новом техническом уровне.

Так как машины являются усовершенствованными и целенаправленными органами человека, то, очевидно, принципиальное подобие между живым существом и его механическим отображением все время возрастает. В особенности это относится к машинам автономного действия. Возникают машины с искусственным интеллектом, самообучающиеся машины и, очевидно, появятся в ближайшее время еще новые классы этих машин. Возможно, что в дальнейшем искусственный интеллект будет создаваться не на электронной, а на биологической нейронно-волоконной основе. Но все это — дело будущего.

В целом можно так сформулировать основные этапы эволюции машин: 1) от времени изобретения первых механизмов до конца первой трети XVIII в. — машина заменяет физическую силу человека, ее составляют двигатель, передача, рабочий орган; 2) с середины XVIII в. до середины XX в.— машина заменяет физическую силу человека и его умение; в ее состав начинают входить элементы регулирования и управления; 3) с середины XX в. до настоящего времени — машина заменяет физическую силу человека, его умение и некоторые его физиологические и психические функции; в ее структуру входят элементы регулирования, управления, искусственного интеллекта.

 

В конце XIX — начале XX в. в Англии жил и творил выдающийся художник-юморист Хит Робинсон. Объектом своих насмешек он избрал... машину. Он выдумывал машины для самых разнообразных и самых невозможных целей. Как правило, машины на его рисунках поражают своими размерами, грубостью техники исполнения и явным несоответствием между затраченной и получаемой работой. Сделаны они «из-под топора», связаны веревочками, карикатурны в прямом смысле этого слова, и несмотря на все это, их можно выполнить «в натуре» и даже заставить работать, что иногда и делалось, в частности, самим же художником. Более того, у него среди машиностроителей была такая высокая репутация, что они неоднократно «пользовались» его идеями.

В годы первой мировой войны карикатурист «перешел» на создание военной техники. Существует мнение, что он имеет несомненный приоритет в таких делах, как камуфляж, использование дымовых завес. Известно также, что его приглашал для разговора один из руководителей британского генерального штаба.

Генерал этот упорно старался узнать у художника, откуда он получил информацию относительно одного чрезвычайно секретного военного изобретения, и никак не хотел поверить, что художник сам додумался до него. Говорили даже, что сотрудники немецкого генштаба также не пропускали ни одного номера тех журналов, в которых карикатурист публиковал свои рисунки.

Выходит, что, несмотря на свой неприглядный внешний вид и крайнюю грубость конструкции, машины, нарисованные художником, обладали чем-то, что свойственно вообще всем машинам, — у них был присущий им «организм». Ведь, по мнению специалистов, машина есть устройство, создаваемое человеком для использования законов природы с целью облегчения физического и умственного труда, увеличения его производительности путем частичной или полной замены человека в процессе труда. Это устройство так или иначе занимается преобразованием энергии и материалов, переработкой информации.

Вычленяя то общее, что присуще любой машине, мы неизбежно придем к двум понятиям — машина и механизм. Оба эти понятия иногда перекрывают друг друга, но и в этом случае они описывают один и тот же объект, с двух, естественно, различных точек зрения. В только что приведенном определении машины на первом месте стоит ее «динамическая» сущность, т. е. то, что она производит работу, заменяя при этом человека.

Механизм — это приспособление для передачи и преобразования движения, а движение, в свою очередь,— обязательный атрибут машины; в этом ее существенное сходство с живым организмом.

Машина может состоять из одного или нескольких механизмов, которые выполняют различные функции. В своей совокупности они должны составить такую последовательность или цепь, которая, исходя из некоторого данного движения, преобразует его в тех целях, для выполнения которых и создана машина.

Выше уже говорилось, что в машине с древних времен различали три составные части: двигатель, передачу и орудие. Двигатель, или приемник, производит или принимает работу, предназначенную для приведения машины в действие; передача служит для распределения работы по рабочим органам машины, которых у машины может быть один или несколько.

Рабочие органы обязательны в каждой машине. Без них нет машины, если исходить из ее предназначения. Иными словами, рабочий орган — обязательное условие существования машины.

С давних же времен в состав машины иногда вводились еще органы, регулирующие ее ход, а иногда и управляющие им. Эти органы, очевидно, не входят в число трех обязательных.

Современная научно-техническая революция выявила наличие еще трех составных частей машины — регулирующей, логической и кибернетической, которые не обязательны, но которые все чаще встречаются в составе машин.

Интересно, что не только в каждой машине есть три вида обязательных составных частей и три необязательных, но подобное же разделение по основному назначению можно отнести и к самим машинам. Могут быть машины-двигатели, машины-передатчики, машины-орудия, логические машины и т. п. Так, например, токарный станок является рабочей машиной, или машиной-орудием. Но это в то же время и настоящая машина, в ее составе мы можем обнаружить двигатель, передачу, орудие, а возможно, и логическую группу (станки с программным управлением).

Продолжим наш анализ. Рассмотрим, из каких частей состоит механизм. Прежде всего, это — звено. Звеном называют «скелетную» часть механизма, т. е. его несущую конструкцию, но — и это надо обязательно иметь в виду — абстрагированную от физических свойств материала. Такими свойствами уже обладает та или иная деталь звена.

Число звеньев меньше числа механизмов. Известно около пяти тысяч механизмов, но звеньев же около двухсот. Сюда относятся рычаги, кулачки, зубчатые колеса, диски, «мальтийские кресты», винты и гайки, а также звенья, обладающие различными свойствами. В зависимости от своего назначения звенья могут иметь различную форму (например, зубчатые колеса: цилиндрические, конические, эллиптические, винтовые) и различные размеры.

С того времени, когда было выяснено, что машины состоят из механизмов, и до настоящего времени продолжаются попытки классификации всего этого непрерывно растущего множества. Их классифицировали по форме, по характеру передаваемого ими движения, по их функциональному значению, выясняли их теоретическую структуру. Все эти попытки вошли в фонд учения о машинах, но самая известная из них, получившая мировое признание, это классификация одного из основателей русской научной школы по теории механизмов и машинам Леонида Владимировича Ассура. Об этой классификации, разработку которой продолжила советская школа ученых-механиков, речь пойдет ниже.

Работа над систематикой механизмов не завершилась и сейчас, так как всегда обнаруживаются такие механизмы, которые не «вписываются» в общепринятую классификацию. Вплоть до настоящего времени разрабатываются и предлагаются новые квалификационные системы, основанные на различных принципах. Эти попытки имеют целью не только найти более точную универсальную систему механизмов, но и облегчить построение новых механизмов и машин, облегчить их синтез, а также дать возможность заменять механизмы одного строения другими, которые выполняют аналогичные преобразования движений.

Звенья не могут существовать в составе машины не связанными друг с другом. Каждые два звена сочленяются одно с другим кинематическими парами, которые на взаимное движение обоих звеньев накладывают определенные ограничения. Последовательность звеньев, связанных между собой кинематическими парами, называется кинематической цепью.

Таким образом, мы можем подойти и к определению механизма: механизм—это замкнутая последовательность звеньев, сочлененных между собой парами, при этом одно или несколько звеньев служит для приложения работы и одно или несколько других.—для получения полезной работ ы. Это ведущие и ведомые звенья. Их наличие в механизме обязательно, тогда как другие—промежуточные звенья — могут и отсутствовать.

Понятие замыкания цепи является достаточно широким. Цепь замыкается не только с помощью постоянной кинематической пары, но и в процессе рабочей операции. Рабочее орудие и обрабатываемый материал также образуют кинематическую пару. Расширение понятия замыкания в особенности пригодно при изучении таких цепей, как роботы и манипуляторы, которые в нерабочем состоянии представляют собой разомкнутые цепи.

Очень важной характеристикой цепей служит число их степеней свободы. Дело в том, что каждое тело, взятое отдельно, имеет в пространстве шесть степеней свободы: оно может сделать прямолинейное движение в направлении всех трех осей в прямоугольной системе координат и криволинейное — вокруг тех же трех осей. Но реально оно может двигаться в каком-то одном направлении. Так, камень, брошенный в каком-либо направлении, в своем полете опишет определенную траекторию, форма которой будет определяться силой броска, земным тяготением, плотностью и движениями воздуха, сопротивлением воздуха, зависящим от формы камня. Аналогично этому происходит полет артиллерийского снаряда с тем лишь отличием, что в этом случае траектория полета предсказывается с некоторой возможной ошибкой.

В машине необходимая траектория движения рабочего звена должна быть точной и заранее предсказанной, что достигается с помощью связей, наложенных на движение звеньев. Именно для этого и создаются кинематические пары. Каждая пара в зависимости от конфигурации и ряда условий соприкосновения звеньев накладывает от одной до пяти связей и, таким образом, допускает от пяти до одной степени свободы. Если мы сможем вычислить числа связей, накладываемых на цепь всеми кинематическими парами, то в результате получим число степеней свободы исследуемого механизма.

По конструктивным признакам основные механизмы можно свести в следующие группы: 1) стержневые, или рычажные (шарнирные) механизмы; 2) фрикционные механизмы; 3) зубчатые механизмы; 4) кулачковые механизмы; 5) механизмы с гибкими звеньями; 6) винтовые механизмы; 7) механизмы с упругими звеньями; 8) комбинированные механизмы; 9) механизмы переменной структуры; 10) механизмы движения с остановками; 11) гидравлические механизмы; 12) пневматические механизмы; 13) электромагнитные механизмы; 14) электронные механизмы.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.