Энтропия всегда неотрицательна.
2.Энтропия равна нулю в том крайнем случае, когда вероятность одного из событий равна 1.Это случай, когда о сообщении все известно и результат не приносит никакой информации.
H(p)
1 H0
0 0,5 p
Энтропия сообщения максимальна, если события равновероятны.
Т.е., если , то .
Это свойство определяется в падении информации по Шеннону и по Хартли. В случае неравновероятности событий количество информации по Шеннону всегда меньше потенциальной информативной емкости.
4.Энтропия аддитивна.
Пусть задано два сообщения A= и B= .
C= , A и B являются независимыми и составляют полную группу, т.е.
Кроме аксиом Шеннона, которые использовались для формулировки понятия энтропии, им были использованы специальные подходы. Подходы Шеннона к определению количества информации сообщения длиной L в условиях заданной вероятностной схемы сопровождается специальными требованиями:
1. Пустое сообщение не содержит информации.
=0
2. Количество информации, содержащейся в сообщении, пропорционально его длине.
, то .
Если есть некоторое сообщение T длиной L символов некоторого алфавита А объемом n, то количество информации , где .
Хинчен и Фадеев через задание своих аксиом показали, что энтропия конечной вероятностной схемы однозначно определяется с точностью до постоянного множителя.
, C .
Аксиомы Хинчена
1.Энтропия конечной вероятностной схемы ненулевая, непрерывная по вероятностям pi при условиях:
1. ;
2. .
2.Энтропия, заданная конечной вероятностной схемой, симметрична по pi.
3. Энтропия, заданная конечной вероятностной схемой, при наличии пустого сообщения равна энтропии, заданная конечной вероятностной схемой без этого сообщения.
4.Энтропия объединенной вероятностной схемы:
, где ,
5. Энтропия конечной вероятностной схемы при равновероятных событиях:
Аксиомы Фадеева
1. – непрерывна при условиях: и положительна хотя в одной точке.
2. - симметрична по .
3. При где .
В дальнейшем все эти подходы Шеннона, Хинчена, Фадеева позволяют характеризовать производительность источника, оценивать возможности сжатия информации и анализировать пропускную способность канала.
2.3. Взаимная информация и её свойства.
Условная энтропия.
Для непрерывных величин .
Рассмотрим два связанных источника:
С=
A=
B= .
Если два источника считать связанными друг с другом, то следует ожидать, что событие одного источника позволяют делать некоторые предположения о событиях другого. В терминах теории информации это означает, что неопределенность второго источника снижается, т.е. источники обмениваются взаимной информацией. Известно, что для совместных событий между собственной, условной и совместной вероятностями существует зависимость, имеющая вид:
Прологарифмируем данное выражение:
= .
Из полученных выражений видно, что собственная информация пары событий определяется суммой собственных информаций каждого из событий за вычетом некоторой неотрицательной величины, которая снижает неопределенность, т.е. она сама в свою очередь является информацией. Эту величину называют взаимной информацией пары событий:
.
Если взять , тогда для этой случайной величины можно использовать понятие математического ожидания.
I(A;B)=
Свойства взаимной информации.
1. Взаимная информация положительна.
2. Взаимная информация симметрична относительно пары вероятностных схем.
I(А;B)=I(B;A)
3. Если сообщение A и B – независимы, т.е. не совместны, то взаимная информация I(А;B)=0.
Если сообщения A и B полностью зависимы, а именно совпадают, т.е. A и B содержат одну и ту же информацию, то взаимная информация:
I(А;B)=I(A)+I(B)
Пример.
Если A и B рассматривать как сообщение, порожденные различными источниками (например, публикации в различных газетах ), тогда для получения взаимно большей совместной ( суммарной) информации взаимная, т.е. одинаковая в данном случае информация, должна быть минимальной.
Если A и B сообщения соответственно на входе и выходе канала связи с помехами, то для получения взаимно большей информации её получателем необходимо, чтобы взаимная информация была наибольшей.
В то же время для описания воздействия помех в канале связи на полученное сообщение используется понятие условной информации и условной энтропии. Для определения условной информации и условной энтропии в заданной объединенной вероятностной схеме вернемся к соотношению:
= = .
При этом совместная информация пары событий складывается из собственной информации каждого из этих событий и некоторой информации, добавленной вторым событием при условии, что произошло первое событие. Поэтому I называют условной информацией пары случайных событий. Если аналогично тому, как мы это делали ранее, составить вероятностную схему для условной вероятности пары событий как для случайной величины:
,
тогда математическое ожидание этой случайной величины и будет являться условной энтропией объединенной вероятностной схемы:
Найдем соотношение между условной энтропией и ее взаимной информаций:
Рассмотрим взаимную информацию опять как случайную величину и, усредняя её, т.е. определяя математическое ожидание по объединенной вероятностной схеме, получим:
I(А;B) = E H(A) - H(A/B) = H(B) - H(B/A).
2.4 Понятие совместной энтропии.
Для двух источников, образующих объединенную вероятностную схему, используя понятие совместной вероятности пары событий, можно определить среднюю информацию всех пар событий:
H(AB) = E .
Не сложно показать, что совместная энтропия складывается из:
H(AB)=H(A)+H(A/B)=H(B)+H(B/A).
Если источники не совместны, то:
H(A/B)=H(A), H(B/A)=H(B).
Если источники считаются связанными, тогда:
H(A/B) H(A);
H(B/A) H(B).
Поэтому в общем случае совместная энтропия определяется следующим образом:
H(AB) H(A)+H(B).
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2025 stydopedia.ru Все материалы защищены законодательством РФ.
|