Тождественные преобразования
· Свободно оперировать понятиями степени с целым и дробным показателем;
· выполнять доказательство свойств степени с целыми и дробными показателями;
· оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;
· свободно владеть приемами преобразования целых и дробно-рациональных выражений;
· выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приёмов;
· использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трёхчлена и для решения задач, в том числе задач с параметрами на основе квадратного трёхчлена;
· выполнять деление многочлена на многочлен с остатком;
· доказывать свойства квадратных корней и корней степени n;
· выполнять преобразования выражений, содержащих квадратные корни, корни степени n;
· свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
· выполнять различные преобразования выражений, содержащих модули.
В повседневной жизни и при изучении других предметов:
· выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
· выполнять преобразования рациональных выражений при решении задач других учебных предметов;
· выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей
Уравнения и неравенства
· Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
· решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
· знать теорему Виета для уравнений степени выше второй;
· понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
· владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
· использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
· решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
· владеть разными методами доказательства неравенств;
· решать уравнения в целых числах;
· изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.
В повседневной жизни и при изучении других предметов:
· составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
· выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов
· составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
· составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты
Функции
· Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, чётность/нечётность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
· строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
· использовать преобразования графика функции для построения графиков функций ;
· анализировать свойства функций и вид графика в зависимости от параметров;
· свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
· использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;
· исследовать последовательности, заданные рекуррентно;
· решать комбинированные задачи на арифметическую и геометрическую прогрессии.
В повседневной жизни и при изучении других предметов:
· конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
· использовать графики зависимостей для исследования реальных процессов и явлений;
· конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|