Сделай Сам Свою Работу на 5

Свойства определённого интеграла





1. , где С - константа
2.

3.

Геометрическое приложение определенного интеграла (площадь криволинейной трапеции).

Рассмотрим фигуру

Рис. 8.1. Криволинейная трапеция

Фигура, ограниченная снизу отрезком [a; b] оси Ox, сверху графиком непрерывной функции y = f(x) такой, что f (x) ≥ 0 при х [a; b] и f (x) > 0 при х (а; b), а с боков ограниченная отрезками прямых х = а и x = b, называется криволинейной трапецией.

Отрезок [a; b] называют основанием этой криволинейной трапеций.

Площадь криволинейной трапеции вычисляется по формуле:

 

Таким образом, геометрический смысл определенного интеграла заключается в вычислении площади криволинейной трапеции.

Приведём различные примеры криволинейной трапеции:

 

 

Рассмотрим основные способы вычисления площади криволинейной трапеции:

Рисунок Формула
       
        или  
           
      S=S1+S2  

Алгоритм нахождения площади криволинейной трапеции:

1. Построить графики функции;

2. Определить пределы интегрирования a и b;

3. Выбрать и записать соответствующую формулу площади криволинейной трапеции;



4. Вычислить площадь криволинейной трапеции.

 

ПРИМЕР : Вычислить площадь криволинейной трапеции, ограниченной осью Ох, прямыми х = -1, х = 2 и параболой y = 9 - x2.

Решение: Построим график функции y = 9 - x2 и изобразим данную криволинейную трапецию:

y = 9 - x2 -парабола, ветви вниз,

координаты вершины:

(0 ; 9) - вершина

Точки пересечения с осью Ох:

9 - x2 = 0

-x2 = 9

x2 = 9 => x1/2 = 3

Проведём прямые х = - 1 и х = 2

f(x)=9 - x2 a = - 1 b = 2

Формула для вычисления площади криволинейной трапеции:

.

Ответ: Sкр.тр = 24(кв.ед)

Лекция 9. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

 

 

Дифференциальные уравнения первого порядка

Рассмотрим дифференциальное уравнение:

y′= f(x,y)

начальное условие Коши к нему имеет вид:

, т.е. при

Общее решение дифференциального уравнения y′=f(x,y) имеет вид y=φ(x,C), где C – произвольная постоянная. Оно определяет семейство интегральных кривых.

Частное решение – это одна интегральная кривая, проходящая через точку, заданную начальным условием.



 

Дифференциальные уравнения первого порядка

с разделяющимися переменными:

А) Если в дифференциальном уравнении y′=f(x,y) функция f(x,y) может быть представлена в виде: , то уравнение называется уравнением с разделяющимися переменными.

Его решение (интегрирование) проводится по следующему алгоритму:

1. Представим , тогда уравнение запишется:

2. Разделить переменные:

3. Проинтегрировать обе части равенства:

,

где С – произвольная постоянная.

Это общий интеграл уравнения, входящие в него неопределенные интегралы находятся методами, рассматриваемыми в интегральном исчислении.

 

Б) Если дифференциальное уравнение записано в виде:

,

то это уравнение с разделяющимися переменными, если

;

Интегрирование уравнения производится так:

;

Считая , разделим на :

Интегрируя обе части получим:

- общий интеграл уравнения.

Заметим, при разделении переменных могут быть «потерянные» решения, которые в некоторых случаях будут особыми решениями.

 

Пример: Найти общее решение дифференциального уравнения

Решение:

Так как , то получим

Это дифференциальное уравнение с разделяющимися переменными.

Разделим переменные (у – влево, х - вправо) и получим:

Проинтегрируем обе части дифференциального уравнения:

Рассмотрим решение каждого из интервалов отдельно:

Тогда, получим

Ответ:

 

Пример: Найти частное решение дифференциального уравнения с разделяющимися переменными, удовлетворяющее начальному условию

при

Решение: , ,
Это дифференциальное уравнение с разделяющимися переменными.

Проинтегрируем обе части дифференциального уравнения:



Рассмотрим решение каждого из интервалов отдельно:

Тогда, получим

 

Чтобы найти частное решение ДУ надо найти значение С при условии, что , :

Тогда частное решение ДУ имеет вид:

Ответ:

 

Дифференциальные уравнения второго порядка

В общем виде дифференциальное уравнение второго порядка записывается так:

Если это уравнение можно разрешить относительно производной второго порядка, то оно примет нормальный вид: а его общее решение содержит две произвольных постоянных:

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.