Сделай Сам Свою Работу на 5

Закона внешнего фото эффекта





Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν < ν0, то фотоэффект уже не происходит.

 

Уравнение Эйнштеина для внешнего фотоэффекта

А. Эйнштейн в 1405 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой v не только испускается, как это предполагал Планк, но и распространяется в пространстве, и поглощается веществом отдельными порциями (квантами), энергия которых e0 = hn.

 

Связь между максимальной кинетической энергии фотоэлектрона и задерживающим напряжением



Вольт-амперная характеристика фотоэлемента

Масса покоя фотона

Фото́н (от др.-греч. φῶς, род. пад. φωτός, «свет») — элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица.

Массу покоя фотона считают равной нулю, Поэтому скорость фотона равна скорости света. По этой причине (не существует системы отсчёта, в которой фотон покоится) внутренняя чётность частицы не определена.

Энергия фотона

Энергия фотона:

где ν — частота, λ — длина волны света, h = б,626·10-34 Дж·с = 4,136·10-15 эВ ·с,

Обобщенная формула Бальмера

Таким образом, волновые числа всех спектральных линий известных серий атомарного водорода можно вычислить по формуле, которая называ-ется обобщенной формулой Бальмера:

 

 

где k = 1 для серии Лаймана,

k = 2 для серии Бальмера,

k = 3 для серии Пашена,

k = 4 для серии Брэкета,

k = 5 для серии Пфунда,

n = k+1, k+2,…

Постулаты Бора

Постулаты Бора — основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света.



Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам для которых момент импульса квантуется: , где n — натуральные числа, а — постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии hν = En − Em, где En;Em — энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний — поглощается.

 

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома[1]. В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Выражение для волны де-Бойля

формула для длины волны де Бойля

(для электрона)

Физический смысл волновой функции

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.



Принцип Паули

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона не могут одновременно находиться в одном квантовом состоянии.

Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.

 

В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения Np = 0,1

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.