|
Индустриализация строительства
Индустриализация строительства — это организация круглогодичного строительного производства с применением комплексно-механизированных процессов строительства дорожных покрытий, оснований, мостов, труб, жилых и промышленных зданий с широким использованием сборных конструкций, в том числе укрупненных с высокой заводской готовностью. Индустриализация предусматривает перевод значительной части трудоемких процессов в стационарные условия промышленного производства со всеми присущими ему прогрессивными чертами.
В результате индустриализации повышается производительность труда, сокращаются сроки и стоимость строительства, что обеспечивает эффективность капитальных вложений. Наибольший эффект достигается при взаимодействии следующих основных технологических и организационных факторов: сборности возводимых сооружений, поточных методов строительства, комплексной механизации и автоматизации производственных процессов.
По степени индустриализации дорожные работы делятся на три группы: работы, которые нельзя выполнить в заводских условиях (возведение земляного полотна); работы, для которых в заводских условиях можно приготовить лишь полуфабрикаты (для устройства покрытий и оснований — асфальтобетонные и цементобетонные смеси); работы, которые можно полностью индустриализировать (строительство труб и мостов, дорожных, производственных зданий и т. п.)
Сборность — важнейший элемент индустриализации строительства. Для качественной оценки уровня сборности сооружений используют показатель «степень сборности» — технико-экономический показатель оценки проектов сооружений и технического уровня строительства. Он определяется отношением (в процентах) сметной стоимости (франко-строительная площадка) сборных конструкций, деталей и узлов заводского изготовления к сметной стоимости всех строительных материалов, конструкций и деталей.
Одной из технических тенденций развития сборного строительства является повышение степени технологичности как отдельных конструкций, так и собираемых из них сооружений. Она предусматривает оптимальность конструктивных решений, массы и точности изготовления элементов, технологии монтажа сооружения, которые бы обеспечивали наименьшие затраты труда, времени и средств на стадиях изготовления и монтажа конструкций при высоком качестве производства работ. Однако необходимо учитывать экономическую сторону этого вопроса. Надо помнить, что сборность конструкций — это лишь средство для ускорения строительства, а не самостоятельная цель.
Внедрить индустриализацию во всех ее формах (переход к сборным конструкциям, комплексная механизация и автоматизация) можно только при выполнении специальных организационных мероприятий.
Главнейшим мероприятием, предшествующим внедрению индустриализации, является корректировка или разработка заново технологического процесса, в котором предусмотрено использование современного технологического оборудования. Особо важное положение в этом случае занимают вопросы технико-экономической целесообразности внедрения индустриализации, так как не всякий технологический процесс обеспечивает получение экономического эффекта от комплексной механизации и автоматизации в заводских условиях по сравнению с выполнением работ на строящемся объекте.
2Устройство путей для мостовых кранов
Рельсовый путь мостового крана состоит из основных и вспомогательных элементов. Основными элементами пути являются рельсы и подкрановые балки. К вспомогательным элементам относятся подрельсовая постель, детали крепления рельсов к подкрановым балкам и балок к колоннам- (перекрытиям) строительной конструкции, а также концевые упоры и отклоняющие линейки.
Для крановых путей мостовых однобалочных кранов с малой рабочей нагрузкой применяют железнодорожные рельсы типа Р18, Р24. Двухбалочные мостовые краны грузоподъемностью 10— 30 т легкого и среднего режимов работы эксплуатируют на путях, выполненных из рельсов типа Р38 при грузоподъемности Юти типа Р43 при грузоподъемности 20—30 т. Следует отметить, что рельсы типа Р43 выпускают специально для промышленного транспорта. Для кранов большей грузоподъемности заводы выпускают железнодорожные рельсы типа Р50 и Р65 (рис. 8, а).
В настоящее время отечественная промышленность выпускает стальные крановые рельсы специального профиля типа КР, соответствующие условиям эксплуатации мостовых, козловых и консольных кранов (рис. 8, б).
Специальные крановые рельсы типа КР имеют более широкую подошву, благодаря чему нагрузка от ходовых колес крана распространяется по верхнему поясу подкрановой балки более равномерно. В отдельных случаях в качестве рельсов с плоскими головками применяют сталь горячекатаную квадратную (рис. 8, в).
Рис. 8. Профили рельсов опорных крановых путей: а — железнодорожные типа Р, б — крановые типа КР, в — сталь квадратного профиля
В зависимости от грузоподъемности крана выбирают типчопор- ного рельса.
Рельсы крановых путей и грузовых тележек крепят таким образом, чтобы исключить боковое и продольное их смещение при передвижении и работе грузоподъемной машины. Крановые рельсы опорного пути крепят к подкрановым балкам строительной конструкции (цеха, эстакады), которые в зависимости от нагрузок, режима работы крана и типа строительной конструкции изготовляют из профильного сортового стального проката, сварными из листового металла или из сборного железобетона. Рельсы грузовых крановых тележек крепят непосредственно к металлоконструкции моста крана.
Рис. 9. Крепления рельсов к подкрановым балкам: а—приваренными скобами, б—прижимными накладками, в—пружинными планками,- г—крюками с регулируемыми гайками, д—пружинными скобами; 1—рельс, 2—скоба, 3—накладка, 4—болт с гайкой, 5—пружинная планка, 6—крюк, 7—гайка, 8—пружинная скоба, Р—шпилька с гайкой, 10—резиновая прокладка
Существуют различные способы крепления рельсов к подкрановым балкам (рис. 9). Предпочтение получили сборно- разборные крепления, обеспечивающие возможность выполнения горизонтальной рихтовки пути и простого ремонта с заменой выбракованных участков рельса. Чтобы регулировать крепления при рихтовке пути, в прижимных планках выполняют овальные отверстия либо сверлят последние по месту. Для мостовых кранов с ручным приводом механизмов и кранов грузоподъемностью до.ЗО т при легком режиме работы Правила допускают крепить рельсы к подкрановым балкам сваркой.
В качестве подвесных крановых путей мостовых кранов применяют специальные рельсы, прикрепляемые снизу к элементам перекрытий строительных конструкций (фермы, стропильные балки) с помощью подвесок или монтажных столиков. В качестве монорельсов для передвижных талей и тельферов применяют специальные двухголовые, тавровые или рельсы типа Р5. Для подвесных кран-балок грузоподъемностью до 1—2 т при величине пролета менее 6 м в качестве опорных рельсов применяют двутавровые балки № 12—30 (ГОСТ 8239—72) из горячекатаной стали марки ВСтЗпс. Для машин большей грузоподъемности (до 5 т) применя- . ют двутавровые балки специального сечения № 24 М—45 М (ГОСТ 19425—74).
Крепление подвесных крановых путей выполняют с помощью подвесок, привариваемых к узлам металлоконструкции стальных ферм перекрытия.
III
Унификация объемно-планировочных параметров зданий и размеров конструкций и строительных изделий осуществляется на основе Единой модульной системы (ЕМС), т. е, совокупности правил координации размеров зданий и их элементов на основе кратности этих размеров установленной единице, т. е. модулю. В Советском Союзе в качестве основного модуля (М) принята величина 100 мм.
Все размеры здания, имеющие значение для унификации, должны быть кратны М, Для повышения степени унификации приняты производные модули (ПМ): укрупненные и дробные. Укрупненные модули 6000, 3000, 1500, 1200, 600, 300, 200 мм, обозначаемые соответственно 60М, З0М, 15М, 12М, 6М, ЗМ, 2М предусмотрены для назначения размеров объемно-планировочных элементов здания и крупных конструкций.
Дробные модули 50, 20, 10, 5, 2 и 1 мм, обозначаемые соответственно 1/2М, 1/5М, 1/10М, 1/20М, 1/50М и 1/100М, служат для назначения размеров относительно небольших сечений конструктивных элементов, толщины плитных и листовых материалов. ЕМС предусматривает три вида размеров: номинальные, конструктивные и натурные (рис. 2.2).
Номинальный (Lн )— проектный размер между координационными осями здания, а также размер конструктивных элементов н строительных изделий между их условными гранями (с включением примыкающих частей швов или зазоров). Этот размер всегда назначают кратным модулю. Конструктивный(Lк) — проектный размер изделия, отличающийся от номинального на величину конструктивного зазора рис.2.2.
Натурный (Lф) — фактический размер изделия, отличающийся от конструктивного на величину, определяемую допуском (положительным и отрицательным), значение которого зависит от установленного класса точности изготовления детали и регламентировано для каждого из них
| 4 Подъемно-транспортное оборудование промышленных зданий
В производственных зданиях действуют различные виды подъемного, транспортного или подъемно-транспортного оборудования. Его подразделяют на оборудование напольное, действующее с пола, и на оборудование, передающее нагрузки на элементы здания.
Рис. 197. Поперечный разрез одноэтажного промышленного здания с несущими наружными стенами: а — без пилястр; б — с пилястрами; 1 — фундамент; 2 — несущая наружная стена; 3 —балка покрытия; 4— плита покрытия; 5 — подвесная кран-балка; 6 — пилястра
Рис. 198. Схема промышленного здания с мостовым краном:1 — консольный кран; 2 — колонны; 3 — кран-балка; 4 — мостовой кран; 5— подкрановая балка; 6 электроталь; 7 — фундаментная балка
К первой группе относятся наземные конвейеры и рольганги, автокары, электрокары, вагонетки узкой колеи, ручные тележки, гусеничные и колесные краны, вагоны и локомотивы широкой или узкой колеи. К оборудованию, передающему нагрузки на элементы здания, относятся коммуникации пневматического и гидравлического транспорта, подвесные конвейеры, лифты и подъемно-транспортное оборудование в виде электрических талей (тельферов), консольных кранов, кран-балок и мостовых кранов.
Электрические тали имеют грузоподъемность от 0,25 до 50 Т и являются небольшим механизмом с электрическим приводом. Таль подвижно подвешена к двутавровой балке, служащей для нее рельсом. Двутавр жестко подвешен к конструкциям перекрытий, покрытий или к специальному каркасу. Электроталь управляется дистанционно (с земли) при помощи подвесного кнопочного устройства и перемещает груз по вертикали и в одном направлении (вдоль монорельса) по горизонтали (рис. 199, б).
Кран-балка (однобалочный кран) (рис. 200) применяется для грузов весом от 0,25 до 5 Г и состоит из стальной двутавровой балки с катками и перемещающимися по ней аналогичными электротали механизмами. Катки кран-балки перемещаются по нижним полкам стальных балок, подвешенных к несущим конструкциям покрытия, или по рельсам, уложенным на специальной подкрановой балке. В одном пролете может быть несколько кран-балок. Кран-балка перемещает груз по вертикали и по горизонтали (поперек и вдоль пролета). Если кран- балку или тельфер устанавливают в существующем здании, то необходимо проверить прочность конструкций, к которым предполагается их подвешивать. Если конструкции не могут выдержать необходимых в таком случае нагрузок, то меняют конструкции или (что проще и дешевле) устраивают в здании отдельный стальной каркас, на котором монтируют монорельс или подкрановый путь для кран-балки. Размерность, грузоподъемность и порядок подвешивания кран-балок строго нормируются.
Основными средствами внутрицехового подъемно-транспортного оборудования являются мостовые краны (рис. 201, в), рабочая тележка которого перемещается по рельсам, закрепленным на жестко связанных между собой несущих балках крана. Кран с помощью колес перемещается по рельсовому пути, уложенному на железобетонную или стальную подкрановую балку. Краном управляют из перемещающейся вместе с ним подвесной кабины. Грузоподъемность мостовых кранов колеблется от 5 до 350 Т, а на предприятиях черной металлургии достигает 600 Т. Большинство кранов могут перемещать груз одновременно в трех направлениях: по вертикали, вдоль и поперек цеха. За габаритами крана (выше его рабочей тележки, между крайними деталями крана и плоскостью стены или колонны) оставляют строго нормируемое пространство для проводов, питающих кран, прохода человека и т. д.
Рис. 199. Механизмы малой грузоподъемности:а — кошка с червячным подъемным механизмом и механизмом передвижения; б — тали электрические передвижные грузоподъемностью 1, 2 и 3 Т; 1 — ходовые колеса; 2 — тяговое колесо механизма передвижения; 3 — тяговое колесо подъемного механизма; 4 и 5 — тяговая калиброванная цепь; 6 — цепной блок с траверсой и крюком; 7 — механизм подъема; 8 — тележка с механизмом передвижения; 9 — обоймицы с крюком; 10 — кнопочные аппараты управления
Рис. 200. Конструктивные схемы подвесных кран-балок:
а — общая схема; б — с ручным приводом; в — двухопорная с электроприводом; 1 — мост; 2 — механизм напряжения; 3 — кошка; 4 — тележка с механизмом передвижения кран-балки; 5 — электроталь; 6 —кнопочное управление; 7 — троллеи с токоприемниками
Рис 201 Вид мостового крана общего назначения:1 — мост; 2 — механизм передвижения моста; 3 — рама тележки; 4 — механизм главного подъема; 5 — механизм передвижения тележки; 6 — механизм вспомогательного подъема; 7 — крюк; 8 — подвеска электромагнита; 9 — грейфер
| 2.Унификацию и стандартизацию в проектировании и строительстве выполняют на основеЕдиной модульной системы (ЕМС), которая представляет собой совокупность правил взаимоувязки и согласования параметров здания с размерами строительных изделий и оборудования на базе основного модуля, равного 100 мм и обозначаемого буквой М.
Все основные размеры здания, имеющие значение для унификации и стандартизации, назначают в соответствия с установленными кратными величинами основного или производных модулей.
Производные модули - укрупненные или дробные, образуются умножением величины основного модуля М, соответственно на целые или дробные коэффициенты.
Укрупненные модули6000, 3000, 1500, 1200, 600, 300, 200 мм, обозначаемые соответственно 60М, ЗОМ, 15М, 12М, 6М, ЗМ и 2М, принимают для значения размеров здания по горизонтали и вертикали (шага, пролета и высоты этажа), а также размеров крупных конструктивных элементов, деталей и изделий.
Дробные модули 50, 20, 10, 5, 2и1 мм, обозначаемые соответственно 1|2 М, 1|5 М, 1|10 М| 1|20М, 1,50 М, 1|100 М, применяют для назначения относительно небольших размеров конструктивных элементов (сечение колонн, балок, перемычек и т. п., толщины плитных и листовых материалов).
Расположение и взаимосвязь объёмно - планировочных и конструктивных элементов зданий определяют с помощью пространственной системы модульных плоскостей и их линий пересечения, которые называются модульными разбивочными осями (рис. 1).
Расстояние между модульными разбивочными осями, кратные основному или производному модулю, называют номинальными модульными размерами. Объемно-планировочные параметры (шаги, пролеты и высоты этажей) всегда измеряют номинальными размерами.
Для конструктивных элементов, строительных изделий и оборудования номинальный размер имеет условное значение идля них назначают конструктивные размеры, отличающиеся от номинальных размеров, как правило, на величину нормированных зазоров или швов. Следует заметить, что объемно-планировочные параметры, не имеют конструктивных размеров.
Натурными размерами конструктивных элементов называют фактические их размеры, которые могут отличаться от конструктивных в пределах установленных допусков.
Конструктивные и натурные размеры могут быть не кратными модулю.
Билет
Объемно-планировочное решение промышленного здания
Несмотря на многообразие производств и соответственно объемно-планировочных и конструктивных решений зданий, могут быть выделены некоторые общие принципы этих решений. Среди них, прежде всего, следует выделить блокирование в одном промышленном здании некоторых производственных помещений, обслуживающих один технологический процесс, или некоторых цехов с разными технологическими процессами или даже разных промышленных предприятий.
Опыт проектирования показывает, что с помощью блокирования можно в отдельных случаях уменьшить площадь заводской территории на 30%, сократить периметр наружных стен до 50%, снизить стоимость строительства на 15—20%.
Вместе с тем блокирование, учитывая разные характеристики технологических процессов, может создать определенные трудности в объемно-планировочных и конструктивных решениях зданий, имея в виду возможные различные требования к размерам пространства, к метеорологическому режиму, воздушной среде и пр.
Блокирование на территориях, с относительно неспокойным рельефом, может привести к неоправданному возрастанию объема земляных работ и снижению экономического эффекта. Поэтому блокирование целесообразно в тех случаях, когда характеристики технологических процессов (например, по нагрузкам, требованиям к среде и др.) относительно близки между собой и когда местные условия строительства не вызывают серьезных трудностей (например, по рельефу, размерам территории и пр.).
Следует отметить еще один положительный фактор блокирования — возможность объединения однородных вспомогательных цехов (например, ремонтно-механических, складских и т. п.) разных производственных процессов. Такое объединение дает возможность не только сократить требуемые объемы здания в результате уменьшения вспомогательных площадей, но и уменьшить количество персонала.
Рис.1. Блокирование в одном здании двух предприятий с различной технологией производства – текстильной фабрики и завода электротехнических изделий.
Наряду с блокированием сохраняет свое значение и павильонная застройка, когда она оправдана характером технологического процесса (например, сопровождаемого значительными тепло- и газовыделениями), местными условиями и главное — доказательными экономическими преимуществами.
На основании экономических соображений в промышленности приборостроения получил, например, применение так называемый «модульный принцип» формирования структуры предприятия, согласно которому предприятие состоит из нескольких автономных однородных единиц — «технологических модулей», размещаемых в отдельных небольших производственных зданиях (корпусах-модулях).
Экономический эффект достигают за счет введения в эксплуатацию сначала первого корпуса-модуля и получения готовой продукции, а затем последовательно вводимых других корпусов. Таким образом, к окончанию строительства последнего корпуса-модуля, т. е. к моменту окончания строительства предприятия в целом, оно выпускает готовую продукцию во все нарастающем объеме. Следует отметить, что при «модульном принципе» утрачиваются преимущества блокирования.
В решении вопроса о блокировании или применении павильонной застройки существенную роль наряду с перечисленными выше технологическими факторами играет экономика
Выбор этажности представляет собой одну из важных задач, решаемых в процессе проектирования.
Если характеристики технологического процесса допускают с одинаковой степенью целесообразность применения как одноэтажных, так и многоэтажных зданий, выбор этажности здания зависит от местных условий (площади участка, отведенного под строительство, его рельефа, климатических характеристик местности и т. п.), а также от технических и экономических показателей.
Следует иметь в виду, что одноэтажные здания позволяют более свободно размещать и перемещать оборудование при модернизации технологического процесса. В них относительно просто решается устройство подъемно-транспортного оборудования и естественного освещения по всей производственной площади цеха. Вместе с тем одноэтажные промышленные здания требуют значительных территорий, которые, бывает часто трудно выделить по условиям застройки города, а с другой — городские территории имеют большую ценность в связи с наличием элементов благоустройства (дороги, подземные коммуникации и т. п.) и перспективами дальнейшего развития города. Строительство одноэтажных промышленных зданий в загородной зоне влечет за собой сокращение нередко ценных сельскохозяйственных угодий.
Следует иметь в виду, что в многоэтажных зданиях общая площадь всегда на 15—20% выше, чем в одноэтажных, за счет устройства лестниц, подъемников, большого числа других коммуникационных помещений. Поэтому при выборе этажности основным критерием считают экономические показатели, получаемые на основании сравнения вариантов возможных решений, если какие-либо из технологических требований не определяют заведомо этажность.
Наконец, следует выделить принцип унификации решений зданий, который преследует получение относительно лучшего объемно-планировочного и конструктивного решения, способствует повышению гибкости или универсальности объемно-планировочных и конструктивных решений промышленных зданий, что имеет большое значение для ускорения научно-технического прогресса.
Преследуя повышение универсальности, нельзя забывать об экономической стороне дела. Например, увеличение сетки колонн может привести к повышению стоимости конструкций покрытия из-за увеличения пролета или шага вертикальных опор. Поэтому, принимая то или иное решение, учитывающее условия повышения универсальности здания, необходимо проверить его экономическую эффективность.
Как указывалось, целесообразное решение промышленного здания определяют прежде всего экономичным использованием пространства, т. е. его площадей и объемов для того технологического процесса, для которого оно предназначено. Приблизительно требуемые производственные площади определяют по мощности предприятия на основе укрупненных отраслевых показателей выпуска готовой продукции в тоннах или рублях с I м2 площади. Отраслевые показатели выводят на основе показателей действующих однородных передовых в техническом и производственном отношениях предприятий.
При проектировании здания уделяют большое внимание не только рациональному расположению технологического оборудования, удобной транспортировке сырья, полуфабрикатов, готовой продукции и отходов производства, но и правильной организации рабочих мест, обеспечению безопасности и созданию условий труда, отвечающих санитарно-гигиеническим требованиям.
Объемно-планировочное решение должно быть возможно проще по своей форме. Здание прямоугольное в плане с параллельно расположенными пролетами одинаковой ширины и высоты упрощает конструктивное решение, повышает степень сборности конструкций, сокращает число их типоразмеров.
Значительное влияние на объемно-планировочные и конструктивные решения промышленных зданий оказывают природно-климатические характеристики места строительства по температурному и ветровому режимам, по количеству осадков и другим показателям. В суровых климатических условиях предпочтительны, например, здания с меньшей площадью наружных ограждающих конструкций (блокированные, многоэтажные) в целях снижения теплопотерь и. следовательно, повышения экономичности здания в эксплуатации. Повторяемость, скорость и направление ветров, а также закономерности снегопереноса оказывают влияние на выбор профиля покрытия, если предусматривают аэрацию и естественное освещение через фонари. Характеристики светового климата вообще определяют решение естественного освещения, размеры светопроемов и размеры фонарей. Из сказанного следует сделать вывод, что климатические характеристики тщательно выявляют и учитывают при принятии проектного решения.
Значительное влияние на объемно-планировочные и конструктивные решения оказывают требования пожарной безопасности. В соответствии с ними определяют наибольшую допускаемую этажность зданий, требуемую этажность зданий, требуемую степень огнестойкости их конструкций и наибольшую допускаемую площадь этажа между противопожарными преградами.
Если позволяет технологический процесс, помещения с производствами, наиболее опасными в пожарном отношении, располагают в одноэтажных зданиях у наружных стен, а в многоэтажных зданиях — на верхних этажах. Из здания на случай возникновения пожара предусматривают возможность безопасной эвакуации людей, для чего проектируют эвакуационные пути и выходы.
Эвакуационные выходы для людей не предусматривают через помещения с производствами категорий А, Б и Е, а также через помещения в зданиях IV и V степени огнестойкости.
Категории производств А и Б — взрыво-, пожароопасные производства. Производства категории А характеризуется применением, хранением или образованием в процессе производства горючих газов, нижний предел взрываемости которых 10% и менее к объему воздуха; жидкости с температурой вспышки паров до 28° С включительно при условии, что указанные газы и жидкости могут образовывать взрывоопасные смеси в объеме, превышающем 5% объема помещения; вещества, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха и друг с другом.
Производства категории Б характеризуются наличием горючих газов, нижний предел взрываемости которых более 10% к объему воздуха; жидкости с температурой вспышки паров выше 28 до 61° С включительно; жидкости, нагретые в условиях производства до температуры вспышки и выше; горючие пыли или волокна, нижний предел взрываемости которых 65 г/м3 и менее к объему воздуха, при условии, что указанные газы, жидкости и пыли могут образовать взрывоопасные смеси в объеме, превышающем 5% объема помещения.
Производства категории В, Г и Д — пожароопасные.
Производства категории В характеризуются наличием жидкости с температурой вспышки паров выше 61° С; горючей пыли или волокон, нижний предел взрываемости которых более 65 г/м3 к объему воздуха; веществ, способных только гореть при взаимодействии с водой, кислородом воздуха или друг с другом; твердых сгораемых веществ и материалов.
В качестве эвакуационных выходов используют предусматриваемые для, производственных целей проезды, проходы, лестницы, двери и ворота, за исключением ворот, предназначенных для пропуска железнодорожного транспорта.
Число эвакуационных выходов из каждого помещения должно быть не менее двух. Наружные пожарные лестницы, удовлетворяющие противопожарным требованиям, могут быть использованы в качестве выходов со второго и вышерасположенных этажей. В зависимости от категории пожарной опасности производства и степени огнестойкости здания расстояние от наиболее удаленного рабочего места до выхода наружу или в лестничную клетку принимают таким, чтобы люди могли покинуть помещение за то время, пока пребывание в нем допустимо, т. е. до тех пор, пока не распространится огонь и продукты горения.
Ширину коммуникационных помещений и дверей на путях эвакуации принимают в зависимости от числа людей, находящихся на наиболее населенном этаже (кроме первого), с таким расчетом, чтобы их пропускная способность полностью обеспечивала эвакуацию в заданное время.. В большинстве случаев конструкции одноэтажных и многоэтажных промышленных зданий выполняют по каркасной схеме. Каркасные системы наиболее рациональны при значительных статических и динамических нагрузках, характерных для промышленных зданий, и значительных размерах перекрываемых пролетов.
Однако при небольших пролетах (до 12 м) и отсутствии тяжелого подъемно-транспортного оборудования вместо каркасных конструкций применяют конструкцию с несущими стенами. Основные конструктивные элементы таких зданий — стены, несущие конструкции покрытия (балки или фермы) и уложенные по ним плиты покрытия. Поскольку в промышленных зданиях обычно отсутствуют внутренние поперечные стены, устойчивость наружных стен достигается устройством пилястр, которые располагают с внутренней или наружной стороны стены, чаще всего в местах опирания несущих конструкций покрытия.
Несущим остовом одноэтажного каркасного промышленного здания служат поперечные рамы и связывающие их продольные элементы.
Рис.2. Основные элементы каркаса одноэтажного промышленного здания. а - общий вид; б - схема устройства подстропильных конструкций; в - схема устройства вертикальных связей в покрытии: 1 - фундамент под колонну, 2 - колонна каркаса, 3 - ригель (балка или ферма), 4 - подкрановая балка, 5 - фундаментная балка; 6 - несущая конструкция ограждающей части покрытия плиты; 7 - подстропильная ферма; 8 - вертикальные связи между колоннами, 9 - вертикальные связи в покрытии; 10 - наружная стена, 11 - оконные переплеты; 12 - — ограждающая конструкция покрытия (пароизоляция, термоизоляция и кровля). 13 - воронка внутреннего водостока.
Рис.3. Устройство подстропильных конструкций больших пролетов. а,б – в главном здании мартеновского цеха с печами емкостью 500 т (а - поперечный разрез; б - продольный разрез); в - в прокатном цехе, Р— разливочный пролет. П печной пролет; 1 — разливочный кран грузоподъемностью 350/75/15 т; 2 - заливочный край грузоподъемностью 180/50т; 3 - консольно-поворотный передвижной кран грузоподъемностью Зт; 4 - консольный передвижной кран грузподъемностью 3 т, 5 - шихтовый открылок; 6 - защитный экран, 7 - подкрановые балки. 8 - стропильные фермы; 9 - подстропильные фермы, 10 - отрезки колонн
Весьма перспективны покрытия в виде тонкостенных пространственных конструкций: оболочек, сводов, складок и др., примеры которых рассмотрены далее. Известны решения пространственных армоцементных покрытий, масса 1 м которых 45—55 кг, а приведенная толщина оболочки 15— 20 мм.
Многоэтажные промышленные здания проектируют, как правило, с полным сборным железобетонным каркасом и самонесущими или навесными стенами и, в отдельных случаях, с неполным каркасом и несущими стенами. Основные элементы каркаса — колонны, ригели, плиты перекрытий и связи. Междуэтажные перекрытия выполняют из сборных железобетонных конструкций двух типов: балочные и безбалочные.
При безбалочных перекрытиях функцию ригелей выполняют железобетонные плиты, располагаемые по разбивочным осям колонн. Колонны и ригели, соединенные жестко в узлах между собой, образуют рамы каркаса, которые могут располагаться поперек, вдоль или одновременно в обоих направлениях.
Междуэтажные железобетонные перекрытия служат жесткими горизонтальными связями: они распределяют горизонтальную (ветровую) нагрузку между элементами каркаса и обеспечивают совместную пространственную работу всех элементов каркаса здания.
Рамно-связевые системы имеют некоторые преимущества по сравнению с рамами, так как упрощаются узловые сопряжения элементов каркаса и их можно унифицировать, достигая некоторое сокращение расхода стали за счет облегчения закладных деталей в стыках и уменьшения арматуры в колоннах.
Требования пожарной безопасности в конструктивных решениях промышленных зданий сказываются прежде всего в устройстве противопожарных преград., т. е. противопожарных стен (брандмауэров, рис. 8, а, б), противопожарных зон (рис. 8 е), а в многоэтажных зданиях — в устройстве несгораемых перекрытий.
Рис.4. Противопожарные преграды. а – поперечная противопожарная стена, б – продольная противопожарная стена, в – противопожарная зона, г – расположение противопожарных преград в плане.
Противопожарные преграды разделяют объем здания на отдельные части, ограничивая при возникновении пожара распространение огня пределами одной части здания. Кроме того, с помощью противопожарных преград выделяют наиболее огнеопасные помещения.
Противопожарные преграды выполняют из несгораемых конструкций. Противопожарные стены располагают поперек или вдоль здания, разделяя междуэтажные перекрытия, покрытия, фонари и другие конструктивные элементы из несгораемых или трудносгораемых материалов. Противопожарные стены устанавливают на самостоятельные фундаменты либо на несущие несгораемые конструкции перекрытий.
Противопожарные стены выполняют выше уровня кровли на 0,6 м, если хотя бы один из элементов покрытия, за исключением кровли, выполнен из сгораемых материалов, и на 0,3 м если все элементы покрытия, за исключением кровли, выполнены из трудносгораемых и несгораемых материалов.
Противопожарные стены зданий с несгораемыми покрытиями могут не разделять покрытий и не возвышаться над кровлей независимо от группы ее возгораемости.
В цехах, оборудованных мостовыми кранами, противопожарные стены располагают только в верхней части здания. Расстояния между противопожарными степами назначают в зависимости от категории пожарной опасности производства. степени огнестойкости, этажности здания и приводятся в строительных нормах и правилах. Устройство проемов в противопожарных стенах не рекомендуется.
Противопожарные зоны устраивают шириной не менее 6 м. Они перерезают здание по всей его ширине. На участках противопожарных зон все конструктивные элементы здания выполняют из несгораемых материалов. Если противопожарная зона расположена вдоль здания, то она представляет собой противопожарный пролет, все конструкции которого изготовляют также из несгораемых материалов (рис. 8, г). По краям противопожарной зоны устраивают из несгораемых материалов гребни, размер которых принимают аналогично выступам противопожарных стен.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|