Принцинципы подбора биотехнологических объектов: модельные и базовые микроорганизмы, штаммы микроорганизмов, использующиеся в биотехнологии.
микроорганизмы должны обладать высокой скоростью роста,утилизировать необходимые для их жизнедеятельности дешевыесубстраты, быть резидентными к посторонней микрофлоре, т. е, обладать высокой конкурентоспособностью.Во многих биотехнологических процессах используется ограниченное число микроорганизмовК таким микроорганизмам относят бактерии Васillus subtilis, Васillus amyloliquefaciens, другие виды бацилл и лактобацилл,виды Streptomyces. Сюда также относят виды грибов Aspergillus,Penicillium, Mucor, Rhizopus, дрожжей Saccharomyces и др. GRAS-микроорганизмы непатогенные, нетоксичные и в основном не образуют антибиотики, поэтому при разработке новогобиотехнологического процесса следует ориентироваться на данные
микроорганизмы, как базовые объекты биотехнологии.Микробиологическая промышленность в настоящее время
использует тысячи штаммов микроорганизмов Следует отметить, что в обозримом будущем ни один из них не будет изучен в той же степени, как Е. соli и Вас. subtilis. Причина этого - колоссальная трудоемкость и высокая стоимость подобного рода исследований.
Основные требования, предъявляемые к системам, используемым для процессов ферментации
Для каждого биотехнологического процесса должна быть разработана подходящая схема, а сам процесс должен постоянно наблюдаться и тщательно контролироваться. Для большинства практических биотехнологических процессов такими системами являются ферменторы или биореакторы, которые обеспечивают необходимые физические условия, способствующие наилучшему взаимодействию катализатора со средой и поставляемым материалом.
Требования к биореакторам:
эффективного перемешивания и гомогенизации среды выращивания;
• обеспечения свободной и быстрой диффузии газообразных компонентов системы (аэрирование в первую очередь);
• теплообмена, обеспечивающего поддержание оптимальной температуры внутри реактора и ее контролируемые изменения;
• пеногашения;
• стерилизации сред, воздуха и самой аппаратуры;
• контроля и регулировки процесса и его отдельных этапов.
К материалам, используемым при конструировании сложных,
прецизионно работающих ферменторов, предъявляются определенные
требования (порой весьма строгие):
а) все материалы, вступающие в контакт с растворами, подающимися
в биореактор, соприкасающиеся с культурой микроорганизма, должны
быть устойчивыми к коррозии, чтобы предотвратить загрязнения
металлами даже в следовых количествах;
б) материалы должны быть нетоксичным и, чтобы даже при самой
малой растворимости они не могли бы ингибировать рост культуры; в)
компоненты и материалы биореактора должны выдерживать повторную
стерилизацию паром под давлением;
г) перемешивающая система биореактора и места поступления и
выхода материалов и продуктов должны быть легко доступными и
достаточно прочными, чтобы не деформироваться или ломаться при
механических воздействиях;
д) необходимо обеспечить визуальное наблюдение за средой и
культурой, так что материалы, используемые в процессе, по возможности
должны быть прозрачными.
Практические задачи биотехнологии.Важнейшие этапы ее развития.
Постоянно увеличивающееся разнообразие современной биологии началось после окончания второй мировой войны, когда в биологию внедрились другие естественнонаучные дисциплины, такие как физика, химия и математика, которые сделали возможным описание жизненных процессов на новом качественном уровне – на уровне клетки и молекулярных взаимодействий. Именно существенные успехи в фундаментальных исследованиях в области биохимии, молекулярной генетики и молекулярной биологии, достигнутые во второй половине текущего столетия, создали реальные предпосылки управления различными (пусть, возможно и не самыми главными) механизмами жизнедеятельности клетки. Сложившаяся благоприятная ситуация в биологии явилась мощным толчком в развитии современной биотехнологии, весьма важной области практического приложения результатов фундаментальных наук. Можно с уверенностью утверждать, что биотехнология является наиболее разительным примером того, как результаты, казалось бы "чистой науки", находят применение в практической деятельности человека. Основой, обеспечивающей благоприятную ситуацию для бурного развития биотехнологии, явились революционизирующие открытия и разработки: • доказательства роли нуклеиновых кислот в хранении и передаче наследственной информации в биологических системах (имеются в виду индивидуальные клетки и отдельные организмы, а не их популяции); • расшифровка универсального для всех живых организмовгенетического кода; • раскрытие механизмов регуляции функционирования генов в процессе жизни одного поколения организмов; • совершенствование существовавших и разработка новых технологий культивирования микроорганизмов, клеток растений и животных; • как логическое следствие из вышесказанного, явилось создание (возникновение) и бурное развитие методов генетической и клеточной инженерии, с помощью которых искусственно создаются новые высокопродуктивные формы организмов, пригодные для использования в промышленных масштабах. Абсолютно новым направлением является так называемая инженерная энзимология, возникшая вследствие развития современных методов изучения структуры и синтеза белков-ферментов и выяснения механизмов функционирования и регуляции активности этих соединений (важных элементов клетки). Достижения в этой области позволяют направленно модифицировать белки различной сложности и специфичности функционирования, разрабатывать создание мощных катализаторов промышленно ценных реакций с помощью высоко стабилизированных иммобилизованных ферментов. Все эти достижения вывели биотехнологию на новый уровень ее развития, позволяющий сознательно и целенаправленно управлять сложными клеточными процессами. Данная новая область биологических знаний и ее последние достижения уже стали крайне важными для здоровья и благополучия человека. биотехнология по существу сводится к использованию микроорганизмов, животных и растительных клеток или же их ферментов для синтеза, разрушения или трансформации (превращения) различных материалов с целью получения полезных продуктов для различных нужд человека. Биотехнологические направления имеют своей целью создание и практическое внедрение (т. е. практическое использование): • новых биологически активных веществ и лекарственных препаратов, используемых в здравоохранении для диагностики, профилактики и лечения различных заболеваний; • биологических средств защиты сельскохозяйственных растений от возбудителей заболеваний и вредителей, бактериальных удобрений и регуляторов роста растений и животных; новых сортов растений, устойчивых к разного рода неблагоприятным воздействиям (факторам внешней среды); новых пород животных с полезными свойствами (трансгенные животные); • ценных кормовых добавок для повышения продуктивности сельскохозяйственных животных (кормового белка, аминокислот, витаминов, ферментов, способствующих повышению усвояемости кормов, и т. п.); • новых биоинженерных методов для получения высокоэффективных препаратов различного назначения, используемых в сельском хозяйстве и ветеринарии; • новых технологий создания и получения хозяйственно ценных продуктов для пищевой, химической и микробиологической промышленности; • эффективных технологий переработки сельскохозяйственных, промышленных и бытовых отходов для получения продуктов, которые могут использоваться в других отраслях хозяйственной деятельности человека (например, биогаза, удобрений, топлива для автомобилей и т. п.).
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|