Долговечность строительных материалов ее принципы
долговечность — способность сопротивляться внешним и внутренним факторам в течение возможно более длительного времени. О долговечности судят по продолжительности изменения до критических пределов прочности, упругости или других свойств. С этой целью образцы или изделия подвергают в лабораторных или натурных (эксплуатационных) условиях воздействию комплекса механических, физических, химических и других факторов, реально воздействующих на конструкцию. После расчетного периода времени действия комплекса факторов, или определенного цикла испытаний, устанавливают степень изменения первоначальных числовых значений свойств и сравнивают с допустимой величиной их изменения.
Сущность упрочнения структуры на первом этапе долговечности заключается в том, что под влиянием внешней среды, нагрузок, инверсий фаз и т. п. в эксплуатационный период в материале, особенно в его вяжущей части, а также в контактных зонах возникают и со временем укрупняются новые (вторичные) структурные центры. Совместно с теми, которые возникли на ранней стадии формирования структуры (первичными), они участвуют в дополнительном процессе уплотнения структуры, с увеличением концентрации той части твердой фазы, которая является основным носителем эффекта упрочнения. В результате не только наблюдается упрочнение структуры и прочности материала по отношению к механическим нагрузкам, но и улучшение некоторых других его свойств, в том числе свойств вяжущей части. Примером упрочнения структуры в эксплуатационный период может служить цементный бетон и его вяжущая (матричная) часть в виде цементного камня при контакте с щавелевой кислотой. Последняя, проникая в поры, образует малорастворимые соли и плотные продукты с очень низкой диффузионной проницаемостью. Особенно часто эффект упрочнения наблюдается в связи с доуплотнением под нагрузкой новообразованиями при соединении углекислого газа с известью в материале, перехода аморфного вещества в кристаллическое и т. п. Однако упрочнение структуры в эксплуатационный период составляет только тогда положительный эффект в долговечности материала, если оно не является следствием так называемого «старения». Под последним понимается часто наблюдаемое явление охрупчивания конгломератов на основе полимеров за счет протекания химических реакций, или рекристаллизации с увеличением в объеме новообразований. Старение переводит материал в состояние хрупкого микротрещинообразования и в конечном итоге резкого сокращения долговечности.
Второй этап — стабилизация структуры — характеризуется сравнительно неизменной концентрацией структурных элементов в единице объема материала и относительным постоянством показателей свойств. Практически уровень этих показателей имеет колебания за счет местных процессов упрочнения и деструкции, однако в целом сохраняется их сбалансированность на некотором среднем, «стабильном» уровне.
Третий этап долговечности — деструкция — самый типичный процесс эксплуатационного периода. Он может начаться с первого же момента эксплуатации конструкции, но может следовать также за этапами упрочнения и временной стабилизации структуры. Третий этап характеризуется нарушением структуры с возможной потерей ее сплошности, постепенным накоплением разрывов межатомных связей. Разрывы возникают под влиянием ускорения теплового движения атомов и молекул, развития механических, усадочных, осмотических и иных напряжений. Установлено, что процесс постепенного повреждения структуры сопутствует каждой, даже самой малоупругой деформации.
Связь строения и свойства строительных материалов
Связь состава , структуры и свойств строительных материалов
Строительные материалы—это природные и искусственные материалы и изделия,
используемые при строительстве и ремонте зданий и сооружений. Различия в
назначении и условиях эксплуатации зданий и сооружений определяют
разнообразные требования к строительным материалам и их обширную
номенклатуру,
Свойства материала в большой мере зависят от особенностей его строения. Строение материала изучают на трех уровнях:
· макроструктура – строение, видимое невооруженным глазом,
· микроструктура – строение, видимое в оптический микроскоп;
· внутреннее строение веществ, составляющих материал – строение на молекулярно-ионном уровне.
Макроструктура строительных материалов бывает следующих типов:
- конгломератная (например, бетоны различного вида);
- ячеистая (пено- и газобетоны, ячеистые пластмассы);
- мелкопористая (керамические специально поризованные материалы);
- волокнистая (древесина, минеральная вата, стеклопластики);
- слоистая (пластмассы со слоистым наполнителем и другие рулонные, листовые, плитные материалы);
- рыхлозернистая (порошкообразная – различные засыпки, заполнители для бетона и проч.).
Внутреннее строение веществ, составляющих материал, определяет прочность, твердость, тугоплавкость и другие важные свойства материала. Кристаллические вещества, входящие в состав строительного материала, различаются по характеру связи между частицами, образующими пространственную кристаллическую решетку. Ковалентная связьосуществляется электронной парой, когда в «узлах» кристаллической решетки находятся атомы. Это простые вещества (алмаз, графит) и некоторые соединения из двух элементов (кварц, карборунд, карбиды, нитриды). Материалы с такой связью отличаются высокой механической прочностью, твердостью, тугоплавкостью.
Виды акустических свойств С М
Акустические свойства материалов связаны с взаимодействием материала и звука; прежде всего, это — звукопроводность и звукопоглощение. Звукопроводность — свойство материала проводить через свою толщу звук; она зависит от строения и массы материала. Тяжелые материалы (кирпич), а также пористые и волокнистые плохо проводят звук.
Звукопроницаемость — отрицательное свойство, так как в большинстве случаев к строительным материалам предъявляются требования изоляции помещений от внешних шумов. Звукоизоляция — ослабление звука при его проникновении через ограждающие конструкции — это свойство материала, обратное звукопроницаемости. Звукопоглощение — свойство материала поглощать и отражать падающий на него звук. Оно зависит от пористости материала, его толщины, состояния поверхности, а также от частоты звукового тона, измеряемого количеством колебаний в секунду. Звукопоглощение За единицу звукопоглощения принимают поглощение звука 1 м2 открытого окна; при открытом окне звук поглощается полностью. Звукопоглощение всех строительных материалов меньше единицы. Звукопоглощение материала оценивают коэффициентом звукопоглощения, т. е. отношением энергии, поглощенной материалом, к общему количеству падающей энергии в единицу времени. Звукопоглощение зависит от характера поверхности материала. Материалы с гладкой поверхностью хорошо отражают падающий на них звук, поэтому в помещениях с гладкими стенами создается постоянный шум. Материалы с развитой открытой пористостью хорошо поглощают и не отражают падающий на них звук. Известно, что ковры, дорожки, мягкая мебель заглушают звук.
Общие физ. свойства см
К физическим свойствам материала относят плотность, пористость, водопоглощение, влагоотдача, гигроскопичность, водопроницаемость, морозостойкость, теплопроводность, звукопоглощение, огнестойкость, огнеупорность и некоторые другие.
Плотность. Плотность материала бывает средней и истинной.
Средняя плотность определяется отношением массы тела (кирпича, камня и т. п.) ко всему занимаемому им объему, включая имеющиеся в нем поры и пустоты, и выражается в соотношении кг/м2.
Истинная плотность — это предел отношения массы к объему без учета имеющихся в них пустот и пор.
У плотных материалов, таких, как сталь и гранит, средняя плотность практически равна истинной, у пористых (кирпич и т. п.) — меньше истинной.
Таблица 1. Истинная и средняя плотность некоторых строительных материалов
Пористость. Эта характеристика определяется степенью заполнения объема материала порами, которая исчисляется в процентах. Пористость влияет на такие свойства материалов, как прочность, водопо-глощение, теплопроводность, морозостойкость и др.
По величине пор материалы разделяют на мелкопористые, у которых размеры пор измеряются в сотых и тысячных долях миллиметра, и крупнопористые (размеры пор — от десятых долей миллиметра до 1~2 мм). Пористость строительных материалов колеблется в широком диапазоне. Так, например, у стекла и металла она равна нулю, у кирпича она составляет — 25-35%, у мипоры — 98%.
Водопоглощение — способность материала впитывать и удерживать в своих порах влагу.
По объему водопоглощение всегда меньше 100%, а по массе может быть более 100 %, например у теплоизоляционных материалов. Насыщение материала водой ухудшает его основные свойства, увеличивает теплопроводность и среднюю плотность, уменьшает прочность.
Степень снижения прочности материала при предельном его водонасыщении называется водостойкостью и характеризуется коэффициентом размягчения. Материалы с коэффициентом размягчения не менее 0,8 относят к водостойким. Их применяют в конструкциях, находящихся в воде, и в местах с повышенной влажностью.
Влагоотдача — это свойство материала терять находящуюся в его порах влагу. Влагоотдача характеризуется процентным количеством воды, которое материал теряет за сутки (при относительной влажности окружающего воздуха 60 % и температуре +2.0 градуса С).
Влагоотдача имеет большое значение для многих материалов и изделий, например стеновых панелей и блоков, которые в процессе возведения здания обычно имеют повышенную влажность, а в обычных условиях благодаря водоотдаче высыхают — вода испаряется до тех пор, пока не установится равновесие между влажностью материала стен и влажностью окружающего воздуха, т. е., пока материал не достигнет воздушно-сухого состояния.
Гигроскопичность — свойство пористых материалов поглощать влагу из воздуха. Гигроскопичные материалы (древесина, теплоизоляционные материалы, кирпичи полусухого прессования и др.) могут поглощать большое количество воды. При этом увеличивается их масса, снижается прочность, изменяются размеры. Для некоторых материалов в условиях повышенной и даже нормальной влажности приходится применять защитные покрытия. А такие материалы, как кирпич сухого прессования можно использовать только в зданиях и помещениях с пониженной влажностью воздуха.
Водопроницаемостью называют способность материала пропускать воду под давлением. Эта характеристика определяется количеством воды, прошедшей при постоянном давлении в течение 1 часа через материал площадью 1 м2 и толщиной 1 м. К водонепроницаемым относятся особо плотные материалы (сталь, стекло, битум) и плотные материалы с замкнутыми порами (например, бетон специально подобранного состава).
Морозостойкость — это способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без снижения прочности и массы, а также без появления трещин, расслаивания, крошения.
Для возведения фундаментов, стен, кровли и других частей здания, подвергающихся попеременному замораживанию и оттаиванию, необходимо применять материалы повышенной морозостойкости. Плотные материалы, не имеющие пор, или материалы с незначительной открытой пористостью, с водопогло-щением не более 0,5%, обладают высокой морозостойкостью.
Теплопроводность — свойство материала передавать теплоту при наличии разности температур снаружи и внутри строения. Эта характеристика зависит от ряда факторов: природы и строения материала, пористости, влажности, а также от средней температуры, при которой происходит передача теплоты. Кристаллические и крупнопористые материалы, как, правило более теплопроводны, чем материалы аморфного и мелкопористого строения. Материалы, имеющие замкнутые поры, обладают меньшей теплопроводностью, чем материалы с сообщающимися порами.
Теплопроводность однородного материала зависит от средней плотности — чем меньше плотность, тем меньше теплопроводность, и наоборот. Влажные материалы более теплопроводны, чем сухие, так как теплопроводность воды в 25 раз выше теплопроводности воздуха. От теплопроводности зависит толщина стен и перекрытий отапливаемых зданий.
Звукопоглощением называется способность материала ослаблять интенсивность звука при прохождении его через материал. Звукопоглощение зависит от структуры материала: сообщающиеся открытые поры поглощают звук лучше, чем замкнутые. Лучшими звукоизолирующими показателями обладают многоетой-ные стены и перегородки с чередующимися слоями пористых и плотных материалов.
Огнестойкость — это свойство материалов противостоять действию высоких температур. По степени огнестойкости материалы делят на несгораемые, трудносгораемые и сгораемые.
Несгораемые материалы (кирпич, бетон, сталь) под действием огня или высоких температур не воспламеняются, не тлеют и не обугливаются, но могут сильно деформироваться.
Трудносгораемые материалы (фибролит, асфальтовый бетон и т. д.) тлеют и обугливаются, но после удаления источника огня эти процессы прекращаются. Сгораемые материалы (дерево, рубероид, пластмассы и т. д.) воспламеняются или тлеют и продолжают гореть или тлеть и после удаления источника огня.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|