|
Аэробное окисление глюкозы
В аэробных условиях (в присутствии кислорода ) реакции гликолиза составляет начальную фазу расщипления углеводов, связанную дальше с другим важным циклом- циклом лимонной кислоты (или его называют цикл трикарбоновых кислот, или цикл Кребса ). В этом случае гликолиз останавливается на стАДНи образования пирувата, который затем путем окислительного декарбоксилирования превращается в ацетил- КоА, а ацетил-КоА , вступая в цикл Кребса, окисляется до СО2 и Н2О. Образующиеся в ходе цикла Кребса и в ходе окислительного декарбоксилирования восстановленные формы НАДН и ФАДН2 поступают в дыхательную цепь, где энергия, образующаяся при переносе с них Н+ и е- на О2 может быть использована , в ходе окислительного фосфорилирования, для синтеза АТФ. Легко рассчитать энергетический эффект этого процесса. На стАДНи образования пирувата из глюкозы образуются 2 молекулы АТФ и 2 молекулы НАДН2. На стАДНи образования ацетил-КоА из пирувата ( в ходе окислительного декарбоксилирования пирувата ) образуется 2НАДН2 ( т.к. из глюкозы получается 2 молекулы пирувата ). В ходе цикла Кребса образуется 1 моль ГТФ (=АТФ ), 3 молекулы НАДН2 и 1 молекула ФАДН2 ( все это умножает на 2, т. к. в цикл Кребса вступает 2 молекулы ацетил-КоА ). Итого получается 2 молекулы АТФ + 2 молекулы ГТФ (=АТФ) + 10 молекул (2+2+6 ) НАДН и 2 моле-кулы ФАДН2. Одна НАДН при окислении в дыхательной цепи может дать энергию достаточную для синтеза 3-х АТФ, следовательно , 10 НАДН2 дадут 30 АТФ. Молекула ФАДН2, окисляясь в дыхательной цепи, может дать энергию, достаточную для синтеза 2 АТФ, а 2ФАДН2=4АТФ. Итого, получается 38 молекул АТФ. Всего при окислении одной молекулы глюкозы выделяется около 600 ккал. При аэробном окислении глюкозы , как мы подсчитали, образуется 38 молекул АТФ. АТФ, как известно , при гидролизе до АДФ дает = 10 ккал, т.е. всего на синтез АТФ при аэробном окислении затрачивается 380 ккал, что составляет около 60%,т.е. КПД аэробного окисления =60%, в то время, как КПД гликолиза составляет около 3 % ( всего 2 молекулы АТФ ) .
Гликолиз протекает в цитозоле. Мы уже говорили о том, что ПВК относительно легко проходит через мембраны ( когда говорим о судьбе лактата ). Так и происходит , ведь все последующие этапы окисления глюкозы проходят в митохондриях. На начальных этапах окисления глюкозы (а они проходят в цитозоле) для окислительного фосфорилирования 3-фосфоглицеринового альдегида необходима окисленная форма НАД+. В ходе гликолиза она получается при восстановлении ПВК в лактат .При аэробном окислении глюкозы первый этап заканчивается образованием ПВК, которая через мембрану поступает внутрь митохондрий, подвергается окислительному декарбоксилированию, далее- цикл Кребса и дыхательная цепь. Можно было бы НАДН, образующуюся при фосфорилировании 3-фосфоглицеринового альдегида (т.к. мы не можем ее окислить с помощью ЛДГ- реакции до НАД+), отправить в митохондрии, там в дыхаательной цепи окислить до НАД+ и использовать для фосфорилирования 3-фосфоглицеринового альдегида. Но ,оказалось, что НАДН и НАД+ не проходят через мембраны. Здесь действуют челночные механизмы: за счет НАДН образуется какая-то восстановленная форма вещества , которая проходит через мембраны, внутрь митохондрий, а окисленная форма возвращается в цитозоль, т.е. это вещество является , по сути, проводником протонов (переносчиком). При этом НАДН Окисляется до НАД+, что и требовалось. Так работает глицерофосфатный челночный механизм:
СН2ОРО3Н2 СН2ОРО3Н2
НАДН2 НАД+
С=О Н – С – ОН
Гидрофосфат DГ
СН2ОН (ингибирована в опухолях) СН2ОН
Фосфодиоксиацетон Глицерофосфат
(получается в ходе (легко проходит через
альдолазной реакции) мембрану внутрь митохондрй )
СН2ОРО3Н2
ФАД+ ФАДН2
С=О
СН2ОН
Фосфодиоксиацетон
(возвращается назад в цитозоль)
Так же работает и малатный (яблочная кислота (или малат)-ЩУК) челночный механизм. Мы уже говорили, что большие количества АТФ угнетают ключевые ферменты гликолиза. Т. к. аэробный распад глюкозы дает большой выход АТФ,. то включение этого процесса подавляет процесс распада углеводов в лактат (это эффект Пастера), т.е. гликолиз ингибируется при поступлении кислорода. Кроме того, что при накоплении АТФ ингибируются ферменты гликолиза (гексокиназа, фосфофруктокиназы и др.), есть и другие механизмы подавления гликолиза при поступлении кислорода. Например, в процессе гликолиза для образования АТФ путем фосфорилирования АДФ, который нужен и при дыхании (для окислительного фосфорилирования),т.е. возникает конкуренция, в которой выигрывают митохондрии. Для образования молочной кислоты из пирувата нужен НАДН, который также нужен и для работы челночных механизмов в аэробных условиях (для восстановления фосфодиоксиацетона до глицерофосфата), т.е.снова конкуренция и снова выигрывают митохондрии
Таким образом в аэробных условиях гликолиз не идет, хотя возможен (например, в опухолях, где угнетен фермент глицерофосфат-ДГ, который катализирует восстановление фосфодиоксиацетона до глицерофосфата- челноки не работают, идет гликолиз.
В скелетных мышцах, где снабжение кислородом невелико и метаболические процессы в большей степени протекают по анаэробному пути, АТФ поступает в результате гликолиза, так что основным субстратом служат запасы гликогена, а конечным продуктом – лактат. В других мышечных тканях, способных к аэробному метаболизму в жестких условиях ( например, в сердечной мышце ) в основном одновременно идет гликолиз с образованием пирувата и действует цикл лимонной кислоты . В этом случае основная часть необходимого АТФ доставляется благодаря процессу ОФ в митохондриях. В соответствии с такими функциональными различиями между аэробным и анаэробными мышечными тканями сердечная мышца обычно содержит гораздо больше митохондрий, чем клетки скелетных мышц. Около 40% Сухой массы сердца приходится на митохондрии.
В периоды длительной мышечной активности АТФ используется непосредственно после его образования. В периоды отдыха энергия АТФ сохраняется в виде макророэрга – креатинфосфата, который в короткие периоды активности и в начальной фазе длительной активности служит донором фосфата для синтеза АТФ из АДФ.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|