Сделай Сам Свою Работу на 5

Третий закон Менделя, или закон независимого наследования признаков.

Определение

Закон независимого наследования (третий закон Менделя) — при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Гены, расположенные в ядерных структурах — хромосомах, закономерно распределяются между дочерними клетками благодаря механизму митоза, который обеспечивает постоянную структуру кариотипа в ряду клеточных поколений (см. разд. 3.6.2.1). Мейоз и оплодотворение обеспечивают сохранение постоянного кариотипа в ряду поколений организмов, размножающихся половым путем (см. разд. 3.6.2.2). В результате набор генов, заключенный в кариотипе, также остается постоянным в ряду поколений клеток и организмов. Закономерное поведение хромосом в митозе, мейозе и при оплодотворении обусловливает закономерности наследования признаков, контролируемых ядерными генами. Выделяют несколько типов наследования признаков. Ядерное наследование может быть аутосомным (гены находятся в аутосомах) и сцепленным с полом (гены
находятся в половых хромосомах). Важное значение информация о механизмах наследования имеет в медико-генетическом консультировании при определении риска рождения ребенка с наследственной болезнью. Качественные характеристики организма контролируются моногенно, т.е. одной парой аллельных генов.



Количественные признаки контролируются многими генами, находящимися в разных участках хромосом или в разных парах хромосом, т.е. полигенно.
Моногенное наследование бывает аутосомным (доминантным, рецессивным, кодоминантным) и сцепленным с полом (с Х – хромосомой — доминантное и
рецессивное, и с Y – хромосомой – голандрическое наследование), и соответствует правилам наследования отдельно взятых менделирующих признаков.

 

 

Наследование признаков при комплементарном взаимодействии генов.

Ответ:

Наследование при комплементарном взаимодействии генов. При комплементарном типе взаимодействия генов, расположенных в разных участках хромосом, взаимодействуют два доминантных гена разных локусов, причем каждый из них не дает фенотипического проявления признака, а совместное комплементарное их действие приводит к формированию нового признака. Например, комплементарное взаимодействие генов у собак выявлено в виде паралича задних конечностей у помесного потомства, полученного от скрещивания здоровых родителей датского дога с сенбернаром. Заболевание проявляется в разной степени: от слабой парализованности до полной неподвижности.

Если сложный признак формируется в результате взаимодополняющего действия определен-ленных аллелей неаллельных генов, то, очевидно, он будет появляться лишь у тех организмов, которые имеют в генотипе именно такую комбинацию аллелей.

Например, присутствие в генотипе доминантных аллелей обоих неаллельных генов обеспечивает развитие сложного признака, чего не происходит при отсутствии одного из них в доминантном состоянии. В этом случае при скрещивании двух дигетерозиготных организмов, имеющих данный признак, лишь у определенной части потомства (9/16) будет формироваться такой признак, а у остальных (7/16) он не разовьется

Возможна также ситуация, когда каждый из неаллельных генов в отсутствие доминантного аллеля другого обеспечивает развитие определенного варианта

признака, а вместе они формируют новый его вариант. Тогда расщепление в потомстве двух дигетерозигот будет соответствовать расщеплению при независимом наследовании признаков (9:3:3:1).

У человека два гена, детерминирующих отложение в волосах черного и красного пигментов; при определенных сочетаниях их аллелей обеспечивают появление нового признака — особого блеска волос.

Типы хромосомного определения пола. Наследование признаков, сцепленных с полом.

Пол возникает сначала как чисто репродуктивное (рекомбинационное) явление. В процессе эволюции он постепенно приобретает также и эволюционные функции. Одновременно и определение пола закономерно переходит от генного (у гермафродитов) к хромосомному (у раздельнополых форм начиная, видимо, с рыб) и геномному (у пчел). Параллельно повышается уровень дифференциации полов и происходит увеличение проявления полового диморфизма.

Хромосомное определение пола

У растений и животных хромосомный механизм определения пола является наиболее распространённым. Согласно хромосомной теории, пол организма определяется половыми хромосомами (гоносомами). В зависимости от того, какой пол является гетерогаметным, выделяют следующие типы хромосомной детерминации:

самки гомогаметны, самцы гетерогаметны (Drosophila-тип)

самки XX самцы XY (Lygaeus-тип)

самки XX самцы X0 (Protenor-тип)

самки гетерогаметны, самцы гомогаметны (Abraxas-тип)

самки ZW самцы ZZ

самки Z0 самцы ZZ

У особей гомогаметного пола ядра всех соматических клеток содержат диплоидный набор аутосом и две одинаковые половые хромосомы, которые обозначаются как XX (ZZ). Организмы такого пола продуцируют гаметы только одного класса — содержащие по одной X (Z) хромосоме.

У особей же гетерогаметного пола в каждой соматической клетке, помимо диплоидного набора аутосом, содержатся либо две разнокачественные половые хромосомы, обозначаемые как Х и Y (Z и W), либо только одна — X (Z) (тогда количество хромосом получается нечётным). Соответственно у особей такого пола образуются два класса гамет: либо несущие X/Z-хромосомы и Y/W-хромосомы, либо несущие X/Z-хромосомы и не несущие никаких половых хромосом.

У большинства видов животных и растений гомогаметен женский пол, а гетерогаметен мужской. Сюда относятся млекопитающие, большинство насекомых, некоторые рыбы, растения и др.

Существует два основных типа XY-детерминации пола:

Как у человека: пол зависит от наличия Y-хромосомы (если она есть, проявляется фенотип самца, если нет — самки). Так, при мутациях, связанных с изменением числа половых хромосом, особи, имеющие в генотипе комбинации XY, XXY, XYY, XXYY и т. п. будут обладать мужским фенотипом различной степени выраженности, а имеющие комбинации XX, X, XXX, XXXX и т. п. — женским.

Как у представителей рода мушек-дрозофил: пол определяется по соотношению числа X-хромосом и числа аутосом, наличие же Y-хромосомы никак не влияет на детерминацию пола, но самцы без неё стерильны, так как в ней находятся гены, ответственные за сперматогенез.

У многих других организмов (птицы, некоторые рептилии и рыбы, бабочки, ручейники, из растений — земляника) наблюдается обратная картина — гомогаметен мужской пол (имеет две гомологичные хромосомы Z), а гетерогаметен женский (имеет одну Z-хромосому и одну состоящую в основном из гетерохроматина и потому генетически инертную W-хромосому).

Вероятно, исходным для бабочек механизмом определения пола был механизм ZO самка/ZZ самец[1]. Затем, путем хромосомных перестроек, возникла система определения пола WZ самка/ZZ самец, характерная для 98 % видов бабочек. У видов с системой Z/ZZ определение пола зависит от соотношения числа пар половых хромосом и аутосом, но у тутового шелкопряда (система WZ/ZZ) обнаружен отвечаюший за развитие женского пола ген Fem в W-хромосоме.

При этом механизме определения пола один из полов (гомогаметный) обладает двумя X-хромосомами, в то время, как второй (гетерогаметный) только одной. При этом пол определяется так же, как и у дрозофил: по соотношению числа X-хромосом и аутосом. Этот механизм определения пола обнаружен у некоторых насекомых (клопов, бабочек и др.) и круглых червей. У нематоды Caenorhabditis elegans при наборе половых хромосом XX формируется гермафродит, а при наборе ХО — самец.

Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами находящимися в половых хромосомах,- называется наследованием, ограниченным полом.

Наследованием, сцепленным с X-хромосомой, называют наследование генов в случае, когда мужской пол гетерогаметен и характеризуется наличием Y-хромосомы (XY), а особи женского пола гомогаметны и имеют две X-хромосомы (XX). Таким типом наследования обладают все млекопитающие (в том числе человек), большинство насекомых и пресмыкающихся.

Наследованием, сцепленным с Z-хромосомой, называют наследование генов в случае, когда женский пол гетерогаметен и характеризуется наличием W-хромосомы (ZW), а особи мужского пола гомогаметны и имеют две Z-хромосомы (ZZ). Таким типом наследования обладают все представители класса птиц.

Если аллель сцепленного с полом гена, находящегося в X-хромосоме или Z-хромосоме, является рецессивным, то признак, определяемый этим геном, проявляется у всех особей гетерогаметного пола, которые получили этот аллель вместе с половой хромосомой, и у гомозиготных по этому аллелю особей гомогаметного пола. Это объясняется тем, что вторая половая хромосома (Y или W) у гетерогаметного пола не несет аллелей большинства или всех генов, находящихся в парной хромосоме.

Таким признаком гораздо чаще будут обладать особи гетерогаметного пола. Поэтому заболеваниями, которые вызываются рецессивными аллелями сцепленных с полом генов, гораздо чаще болеют мужчины, а женщины часто являются носителями таких аллелей.

Примеры заболеваний человека, сцепленного с полом

Гемофилия A

Гемофилия В

Дальтонизм

Лекарственная гемолитическая анемия, связанная с дефицитом глюкозо-6-фосфатдегидрогеназы (Г6ФД)

Синдром Леша-Найхана

 



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.