Сделай Сам Свою Работу на 5

Краткие теоретические сведения





Криптография– обеспечивает сокрытие смысла сообщения с помощью шифрования и открытия его расшифровкой, которые выполняются по специальным алгоритмам с помощью ключей.

Ключ – конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор только одного варианта из всех возможных для данного алгоритма.

Криптоанализ – занимается вскрытием шифра без знания ключа (проверка устойчивости шифра).

Кодирование– (не относится к криптографии) – система условных обозначений, применяемых при передаче информации. Применяется для увеличения качества передачи информации, сжатия информации и для уменьшения стоимости хранения и передачи.

Криптографические преобразования имеют цель обеспечить недоступность информации для лиц, не имеющих ключа, и поддержание с требуемой надежностью обнаружения несанкционированных искажений.

Большинство средств защиты информации базируется на использовании криптографических шифров и процедур шифрования-расшифровки. В соответствии со стандартом ГОСТ 28147-89 под шифром понимают совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, задаваемых ключом и алгоритмом преобразования.



В криптографии используются следующие основные алгоритмы шифрования:

· алгоритм замены (подстановки) – символы шифруемого текста заменяются символами того же или другого алфавита в соответствии с заранее обусловленной схемой замены;

· алгоритм перестановки – символы шифруемого текста переставляются по определенному правилу в пределах некоторого блока этого текста;

· гаммирование – символы шифруемого текста складываются с символами некоторой случайной последовательности;

· аналитическое преобразование – преобразование шифруемого текста по некоторому аналитическому правилу (формуле).

Процессы шифрования и расшифровки осуществляются в рамках некоторой криптосистемы. Для симметричной криптосистемы характерно применение одного и того же ключа как при шифровании, так и при расшифровке сообщений. В асимметричных криптосистемах для шифрования данных используется один (общедоступный) ключ, а для расшифровки – другой (секретный) ключ.



 

Симметричные криптосистемы

Шифры перестановки

В шифрах средних веков часто использовались таблицы, с помощью которых выполнялись простые процедуры шифрования, основанные на перестановке букв в сообщении. Ключом в данном случае является размеры таблицы. Например, сообщение “Неясное становится еще более непонятным” записывается в таблицу из 5 строк и 7 столбцов по столбцам:

Н О Н С Б Н Я
Е Е О Я О Е Т
Я С В Е Л П Н
С Т И Щ Е О Ы
Н А Т Е Е Н М

 

Для получения шифрованного сообщения текст считывается по строкам и группируется по 5 букв:

 

НОНСБ НЯЕЕО ЯОЕТЯ СВЕЛП НСТИЩ ЕОЫНА ТЕЕНМ

 

Несколько большей стойкостью к раскрытию обладает метод одиночной перестановки по ключу. Он отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы. Используя в качестве ключа слово «ЛУНАТИК», получим следующую таблицу:

 

Л У Н А Т И К     А И К Л Н Т У
   
Н О Н С Б Н Я     С Н Я Н Н Б О
Е Е О Я О Е Т     Я Е Т Е О О Е
Я С В Е Л П Н     Е П Н Я В Л С
С Т И Щ Е О Ы     Щ О Ы С И Е Т
Н А Т Е Е Н М     Е Н М Н Т Е А

До перестановки После перестановки



 

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если в ключе встретились бы одинаковые буквы, они бы нумеровались слева направо. Получается шифровка:

 

СНЯНН БОЯЕТ ЕООЕЕ ПНЯВЛ СЩОЫС ИЕТЕН МНТЕА

 

Для обеспечения дополнительной скрытности можно повторно шифровать сообщение, которое уже было зашифровано. Для этого размер второй таблицы подбирают так, чтобы длины ее строк и столбцов отличались от длин строк и столбцов первой таблицы. Лучше всего, если они будут взаимно простыми.

Кроме алгоритмов одиночных перестановок применяются алгоритмы двойных перестановок. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровке перестановки проводятся в обратном порядке. Например, сообщение “Приезжаю_шестого” можно зашифровать следующим образом:

 

         
П Р И Е   И П Е Р   А З Ю Ж
З Ж А Ю   А Ю Ж   Е _ С Ш
_ Ш Е С   Е. _ С Ш   Г Т О О
Т О Г О   Г Т О О   И П Е Р

Двойная перестановка столбцов и строк

 

В результате перестановки получена шифровка АЗЮЖЕ_СШГТООИПЕР. Ключом к шифру служат номера столбцов 2413 и номера строк 4123 исходной таблицы.

Число вариантов двойной перестановки достаточно быстро возрастает с увеличением размера таблицы: для таблицы 3 х 3 их 36, для 4 х 4 их 576, а для 5*5 их 14400.

В средние века для шифрования применялись и магические квадраты. Магическими квадратами называются квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная с единицы, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число. Для шифрования необходимо вписать исходный текст по приведенной в квадрате нумерации и затем переписать содержимое таблицы по строкам. В результате получается шифротекст, сформированный благодаря перестановке букв исходного сообщения.

 

    О И Р Т
    З Ш Е Ю
    _ Ж А С
    Е Г О П

 

П Р И Е З Ж А Ю _ Ш Е С Т О Г О

 

Число магических квадратов очень резко возрастает с увеличением размера его сторон: для таблицы 3*3 таких квадратов -1; для таблицы 4*4 - 880; а для таблицы 5*5-250000.

 

Шифры простой замены

Система шифрования Цезаря - частный случай шифра простой замены. Метод основан на замене каждой буквы сообщения на другую букву того же алфавита, путем смещения от исходной буквы на K букв.

Известная фраза Юлия Цезаря VENI VINI VICI – пришел, увидел, победил, зашифрованная с помощью данного метода, преобразуется в SBKF SFAF SFZF (при смещении на 4 символа).

Греческим писателем Полибием за 100 лет до н.э. был изобретен так называемый полибианский квадрат размером 5*5, заполненный алфавитом в случайном порядке. Греческий алфавит имеет 24 буквы, а 25-м символом является пробел. Для шифрования на квадрате находили букву текста и записывали в шифротекст букву, расположенную ниже ее в том же столбце. Если буква оказывалась в нижней строке таблицы, то брали верхнюю букву из того же столбца.

 

Шифры сложной замены

Шифр Гронсфельда состоит в модификации шифра Цезаря числовым ключом. Для этого под буквами сообщения записывают цифры числового ключа. Если ключ короче сообщения, то его запись циклически повторяют. Шифротекст получают примерно также, как в шифре Цезаря, но отсчитывают не третью букву по алфавиту (как в шифре Цезаря), а ту, которая смещена по алфавиту на соответствующую цифру ключа.

Пусть в качестве ключа используется группа из трех цифр – 314, тогда

Сообщение: СОВЕРШЕННО СЕКРЕТНО

Ключ: 3143143143143143143

Шифровка: ФПИСЬИОССАХИЛФИУСС

В шифрах многоалфавитной замены для шифрования каждого символа исходного сообщения применяется свой шифр простой замены (свой алфавит):

 

    АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_
А   АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_
Б   _АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ
В   Я_АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮ
Г   ЮЯ_АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭ
.   …………
Я   ВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_АБ
_   БВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_А

 

Каждая строка в этой таблице соответствует одному шифру замены аналогично шифру Цезаря для алфавита, дополненного пробелом. При шифровании сообщения его выписывают в строку, а под ним ключ. Если ключ оказался короче сообщения, то его циклически повторяют. Шифротекст получают, находя символ в колонке таблицы по букве текста и строке, соответствующей букве ключа. Например, используя ключ АГАВА, из сообщения ПРИЕЗЖАЮ ШЕСТОГО получаем следующую шифровку:

 

Сообщение ПРИЕЗЖАЮ_ШЕСТОГО
Ключ АГАВААГАВААГАВАА
Шифровка ПНИГЗЖЮЮЮАЕОТМГО

 

Гаммирование

Процесс шифрования заключается в генерации гаммы шифра и наложении этой гаммы на исходный открытый текст. Перед шифрованием открытые данные разбиваются на блоки Т(0)i одинаковой длины (по 64 бита). Гамма шифра вырабатывается в виде последовательности блоков Г(ш)i аналогичной длины (Т(ш)i=Г(ш)i+Т(0)i, где + - побитовое сложение, i =1-m).

Процесс расшифровки сводится к повторной генерации шифра текста и наложение этой гаммы на зашифрованные данные T(0)i=Г(ш)i+Т(ш)i.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.