Сделай Сам Свою Работу на 5

Измерений (косвенные измерения)

К.В. Подмастерьев,

Е.В. Пахолкин,

В.В. Мишин

 

 

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

По выполнению расчетно-графических

И курсовых работ

по метрологическим дисциплинам

Орел 2016 г.

вторы: заведующий кафедрой ПМиС, доктор технических наук, профессорК.В. Подмастерьев

професор кафедры ПМиС, кандидат технических наук Е.В. Пахолкин

професор кафедры ПМиС, кандидат технических наукВ.В. Мишин

 

Рецензент: доцент кафедры ПМиС,кандидат технических наук, доцент

З.П. Лисовская

 

 

Методические указания по выполнению расчетно-графических и курсовых работ по метрологическим дисциплинам содержат задания по обра­ботке экспериментальных данных при выполнении однократных и многократных измерений, нескольких серий измерений, при функцио­нальных преобразованиях результатов измерений и исследовании фи­зических зависимостей.

В настоящих методических указаниях представлены индивидуаль­ные задания пяти видов (по 100 вариантов).

 

Редактор Т.Д Васильева

Технический редактор <инициалы, фамилия>

 

Подписано к печати <дата>. Формат 60x84 1/16.

Печать офсетная. Уч.-изд.л. 2,3. Усл. печ. л. _____.. Тираж 100 экз.

Заказ № <число>

Отпечатано с готового оригинал-макета на полиграфической базе ОрелГТУ,

 

302020, г. Орел, ул. Московская, 65.

 

Ó ФГБОУ !ПГУ», 2016

Подмастерьев К.В.,

Пахолкин Е.В.,

Мишин В.В., 2016

 


Содержание

1 Общие положения
1.1 Содержание расчетно-графической работы  
1.2 Оформление работы  
2 Задания и методические указания
2.1 Задание 1. Однократное измерение  
2.1.1 Условие задания  
2.1.2 Указания по выполнению  
2.1.3 Порядок расчета  
2.2 Задание 2. Многократное измерение
2.2.1 Условие задания  
2.2.2 Указания по выполнению  
2.2.3 Порядок расчета  
2.3 Задание3. Обработка результатов нескольких серий измерений
2.3.1 Условие задания  
2.3.2 Указания по выполнению  
2.3.3 Порядок расчета  
2.4 Задание 4. Функциональные преобразования результатов измерений (косвенные измерения)
2.4.1 Условие задания  
2.4.2 Указания по выполнению  
2.4.3 Порядок расчета  
2.5 Задание 5. Обработка экспериментальных данных при изучении зависимостей
2.5.1 Условие задания  
2.5.2 Указания по выполнению  
2.5.3 Порядок расчета  
Список использованных источников
Приложение А
Приложение Б
Приложение В
Приложение Г
Приложение Д
Приложение Е
Приложение Ж
Приложение И

ОБЩИЕ ПОЛОЖЕНИЯ



Содержание расчетно-графической работы

 

Согласно государственным образовательным стандартам циклы общепрофессиональных дисциплин практически по любой специальности включают одну из метрологических дисциплин. Напри­мер, по специальности 190100 изучается дисциплина «Метрология, стандартизация, сертификация», по специальностям 220500 и 200800 – «Метрология, стандартизация и технические измерения». При этом рабочие планы для различных специальностей предполагают выполнение расчетно-графических или курсовых работ. Наряду со специфическими задачами изучения метрологической дисциплины для каждой специальности есть общие цели и задачи для всех специальностей.

Одной из основных задач изучения метрологических дисциплин в вузе является освоение методов получения достоверной измеритель­ной информации и правильного ее использования, а также приобрете­ние практических навыков обработки данных при выполнении различных видов измерений.

Решению указанной задачи и служат задания, изложенные в данных методических указаниях. При выполнении работы студент углубляет те­оретические знания и получает практические навыки в области обра­ботки экспериментальных данных при выполнении однократных и многократных измерений, нескольких серий измерений, при функцио­нальных преобразованиях результатов измерений и исследовании фи­зических зависимостей.

В настоящих методических указаниях представлены индивидуаль­ные задания пяти видов (по сто вариантов):

– задание 1. Однократное измерение;

– задание 2. Многократное измерение;

– задание 3. Обработка результатов нескольких серий измерений;

– задание 4. Функциональные преобразования результатов измере­ний;

– задание 5. Обработка экспериментальных данных при изучении зависимостей.

В зависимости от изучаемой дисциплины и планируемого объема работа может включать лишь некоторые из представленных пяти зада­ний.

 

Оформление работы

 

Расчетно-графические и курсовые работы оформляются на листах стандарт­ного формата А4 (297x210 мм). Форма титульного листа представлена в приложении А.

Работа должна включать по каждому заданию: условие задачи; экспериментальные данные; априорную информацию; выбранный алго­ритм обработки с соответствующими пояснениями и промежуточные ре­зультаты обработки экспериментальных данных; полученный результат измерений; необходимые графики и диаграммы, поясняющие решение задач.

В конце работы необходимо представить список использованных источников.

ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Задание 1. Однократное измерение

2.1.1 Условие задания

При однократном измерении физической величины получено показание средства измерения X = 10. Определить, чему равно значение измеряемой величины, если экспериментатор обладает априорной информацией о средстве измерений и условиях выполнения измерений согласно данным таблицы 1.

Указания по выполнению

1. Исходные данные студент выбирает из таблицы 1 по предпоследней и последней цифрам шифра; например шиф­ру 96836 соответствует априорная информация, определяемая на пе­ресечении строки 3 столбца 6.

2. Априорная информация в таблице 1 представлена в двух вари­антах. В первом варианте даются сведения о классе точности средс­тва измерений: пределы измерений, класс точности, значение адди­тивной (qа) или мультипликативной (qм) поправки. Например, данные: -50...50; 1,5; qа = 0,5, – означают, что средство измерения имеет диапазон измерений от -50 до 50, класс точности 1,5, а значение аддитивной поправки равняется 0,5.

Во втором варианте в качестве априорной информации даются сведения о видах и характеристиках распределения вероятности ре­зультата измерения: вид закона распределения, значение оценки среднего квадратического отклонения (Sx), доверительная вероятность Р (для нормального закона распределения) и значение адди­тивной (qа) или мультипликативной (qм) поправки. Например, данные: норм.; Sx =0,5; Р = 0,95; qм = 1,1 – означают, что закон расп­ределения вероятности результата измерения нормальный, со значени­ем оценки среднеквадратического отклонения 0,5. При этом имеет место мультипликативная поправка (поправочный множитель) 1,1, а доверительный интервал следует рассчитывать с доверительной веро­ятностью 0,95.

Порядок расчета

Результат измерения при однократном измерении определяется по алгоритму, представленному на рисунке 34 в источнике [1].

Обработка экспериментальных данных зависит от вида используе­мой априорной информации. Если это информация о классе точности, то пределы, в которых находится значение измеряемой ве­личины без учета поправки, определяются следующим образом:

 

Q1 = X; Q2 = X + ,

 

где - предел допускаемой абсолю­тной погрешности средства измерения при его показании X. Значе­ние определяется в зависимости от класса точности и способа его задания по ГОСТ 8.401-80.

Если в качестве априорной используется информация о законе распределения вероятности, то пределы определяются через дове­рительный интервал:

 

Q1 = XE; Q2 = X + Е.

 

Значение Е определяется в зависимости от вида закона распределе­ния вероятности результата измерения. Для нормального закона

 

Е = tSx,

 

где t для заданной доверительной вероятности Р выбира­ется из таблиц интегральной функции нормированного нормального распределения Ф(t) (например, табл. 1.1.2.6.2 [2], при этом следует учитывать, что Р = 2Ф(t)). Таблица распределения также приведена в приложении Б.

Для равномерного закона распреде­ления вероятности результата измерения значение Е (аналог довери­тельного интервала) можно определить из выражения

 

Е = aSx,

 

где .

При представлении результата измерения необходимо внести поправки и уточнить пределы, в которых находится значение измеряемой величины.

При вычислении следует руководствоваться прави­лами округления, согласно которым значения среднеквадратических отклонений указываются в окончательном ответе двумя значащими цифрами, если первая из них равна 1 или 2, и одной, если первая равна 3 или более. Все предварительные расчеты выполняются не ме­нее чем с одним или двумя лишними знаками.

В качестве справочных данных могут исполь­зоваться аналогичные таблицы из других литературных источников.

 


Таблица 1 – Исходные данные
Предпоследняя цифра щифра Последняя цифра шифра
0…100 1,0 Qa = 1 -50…+50 0,02/0,01 Qa = -2 0…50 1,0 Qм = 1.1 0…50 4,0 Qм = 0.9 -30…+30 1,5 Qм = 1.2 0…50 0,2/0,1 Qа = -0.5 0…100 4,0 Qа = 0 -50…+50 2,5 Qа = 0 0…30 6,0 Qа = 1 -10…+10 1,0 Qм = 1,1
норм. Sx = 0,1 P = 0,9 Qa = 1 норм. Sx = 0,5 P = 0,95 Qa = 1,3 норм. Sx = 1 P = 0,9 Qa = -1 норм. Sx = 0,6 P = 0,98 Qa = 0,5 норм. Sx = 0,3 P = 0,9 Qa = 0 норм. Sx = 0,1   Qa = -1,0 норм. Sx = 0,3 Qa = 1,1 норм. Sx = 0,5 P = 0,8 Qa = 0 норм. Sx = 0,6 Qa = 1,0 норм. Sx = 0,2 P = 0,8 Qa = -0,8
-30…+50 2,5 Qa = 1 -50…+30 2,5 Qa = 1 0…150 1,0 Qм = 1,1 -20…+20 1,5 Qм = 0,9 0…50 2,5 Qa = 0 -10…+20 4,0 Qa = 0,1 0…30 4,0 Qм = 1,2 0…50 0,03/0,01 Qa = 0 0…10 0,02/0,01 Qa = 1,0 0…30 1,0 Qa = 1,1
норм. Sx = 0,2 P = 0,99 Qa = 0 норм. Sx = 0,3 P = 0,8 Qм = 1,0 норм. Sx = 0,4 P = 0,95 Qa = 0,8 равн. Sx = 0,4 Qa = 1,0 равн. Sx = 0,8 Qм = 0,9 равн. Sx = 0,6 Qa = 1,0 норм. Sx = 0,6 P = 0,8 Qa = 0,5 норм. Sx = 0,7 P = 0,9 Qa = -0,5 равн. Sx = 0,5 Qa = 0,6 равн. Sx = 0,6 Qм = 1,2
0…100 6,0 Qa = 1,0 -50…+50 1,5 Qм = 0,9 0…30 4,0 Qa = -1,0 -20…+20 1,0 Qa = 0 -30…+30 0,04/0,02 Qa = 1,0 0…50 4,0 Qa = 0,5 -100…100 0,1 Qa = 0,2 1…100 0,2 Qa = 0 0…30 0,5 Qa = 0,9 0…50 0,25 Qa = 0,1
0…100 4,0 Qa = -0,5 0…50 0,4 Qa = -0,2 -10…+10 0,5 Qa = -1,0 -30…+50 0,25 Qм = 0,9 -100…100 0,1 Qa = 0,5 0…10 1,0 Qa = 0,2 0…50 0,1/0,2 Qм = 1,1 0…100 0,2/0,1 Qм = 1,1 0…50 6,0 Qa = 0,5 -20…+20 0,3/0,2 Q = 0
норм. Sx = 0,5 P = 0,9 Qa = 0,3 норм. Sx = 0,2 P = 0,95 Qм = 1,1 норм. Sx = 0,4 P = 0,9 Qм = 1,1 норм. Sx = 0,6 P = 0,8 Qa = -1,0 равн. Sx = 0,1   Qa = 0,3 равн. Sx = 0,2   Qa = -0,1 равн. Sx = 0,4   Qм = 0,8 равн. Sx = 0,3 Qa = -0,5 норм. Sx = 0,1 P = 0,9 Qм = 0,95 норм. Sx = 0,4 P = 0,95 Qa = -0,1
0…15 0,02/0,01 Qa = 1,1 0…20 0,1 Qм= 1,01 -20…+30 0,25 Qa = -0,1 -30…+20 0,25 Qa = -0,1 0…80 0,05 Qa = -0,1 0…100 0,1 Qм= 0,9 0…50 6,0 Qм= 1,2 -10…20 4,0 Qм= 0,9 -20…+20 1,0 Qм= 1,0 -25…+25 1,5 Qa = -0,5
0…50 0,02/0,01 Qм = 1,1 0…10 0,1 Qa = 0,1 -10…20 0,25 Qм = 0,9 -50…+50 1,5 Qa = 0,1 0…50 1,6 Qм = 0,01 0…20 1,5 Qм = 1 0…50 2,0 Qa = 1 -10…+10 0,01/0,02 Qм = 1,1 0…15 0,5 Qa = 0,1 0…10 0,1 Qa = 0,2
норм. Sx = 0,5 P = 0,9 Qa = 0,1 норм. Sx = 0,9 P = 0,9 Qa = 0,9 норм. Sx = 1,5 P = 0,8 Qм = 1,1 норм. Sx = 0,9 P = 0,8 Qa = 0 равн. Sx = 0,5 Qa = 1,0 равн. Sx = 0,8 Qa = 0,8 норм. Sx = 0,85 P = 0,95 Qa = 0,1 норм. Sx = 0,9 P = 0,99 Qa = 0 норм. Sx = 0,1 P = 0,95 Qм = 1,1 норм. Sx = 0,2 P = 0,9 Qa = 0,2

Задание 2. Многократное измерение

 

2.2.1 Условие задания

При многократном измерении одной и той жефизической величины получена серия из 24 результатов измерений Qi; i Î [1...24]. Эти результаты после внесения поправок представлены в таблице 2. Определить результат измерения.

 

Таблица 2 – Исходные данные

Предпоследняя цифра шифра Последняя цифра шифра  
 
482 495
492 484
483 494
492 486
481 494
495 484
485 492
492 483
482 493
493 480
   

 

Указания по выполнению

1. Серию экспериментальных данных студент выбирает из таблицы 2 по предпоследней и последней цифрам шифра. Например, шифру 96836 соответствует серия, включающая все результаты измерений, которые приведены в строке 3 и столбце 6.

2. Результат измерения следует получить с доверительной вероятностью 0,95.

Порядок расчета

Результат многократного измерения находится по алгоритму, представленному на рисунке 40 [1]. При этом необходимо учитывать, что n = 24, следовательно, порядок расчетов и их содержание определяются условием 10…15 < n < 40…50.

1. Определить точечные оценки результата измерения: среднего арифметического и среднего квадратического отклонения SQ результата измерения.

2. Обнаружить и исключить ошибки. Для этого необходимо:

– вычислить наибольшее по абсолютному значению нормированное отклонение

 

;

– задаться доверительной вероятностью Р и из соответствующих таблиц (таблица П.6 [3] или из таблица В.1) с учетом q = 1 – Р найти соответствующее ей теоретическое (табличное) значение νq;

– сравнить ν с νq.

Если ν > νq, то данный результат измерения Qi является оши­бочным, он должен быть отброшен. После этого необходимо повторить вычисления по пунктам 1 и 2 для сокращенной серии результатов изме­рений. Вычисления проводятся до тех пор, пока не будет выполнять­ся условие ν < νq.

3. Проверить гипотезу о нормальности распределения оставших­ся результатов измерений.

Проверка выполняется по составному критерию [3].

Применив критерий 1, следует:

– вычислить отношение

– задаться доверительной вероятностью P1 (рекомендуется принять P1 = 0,98) и для уровня значимости q1 = 1 – Р1 по соответствующим таблицам (таблица П.7 [3] или таблица Г.1) определить квантили рас­пределения d1-0,5qld0,5q1;

– сравнить d с d1-0,5ql и d0,5q1.

Если d1-0,5q1 < d < d0,5q1, то гипотеза о нормальном законе распределения вероятности результата измерения согласуется с экспериментальными данными.

Применив критерий 2, следует:

– задаться доверительной вероятностью Р2 (рекомендуется принять Р2 = 0,98) и для уровня значимости q2 = 1 – Р2 с учетом n опреде­лить по соответствующим таблицам (таблица П.8 [3] или таблица Г.2) зна­чения m и Р*;

– для вероятности Р* из таблиц для интегральной функции нормиро­ванного нормального распределения Ф(t) (таблица 1.1.2.6.2 [2] или таблица Б.1) определить значение t и рассчитать Е = tSQ.

Если не более m разностей | i - | превосходит Е, то гипо­теза о нормальном законе распределения вероятности результата из­мерения согласуется с экспериментальными данными, закон можно признать нормальным с вероятностью Р0 ³ (Р1 + Р2 – 1).

Если хотя бы один из критериев не соблюдается, то гипотезу о нормальности распределения отвергают.

4. Определить стандартное отклонение среднего арифметическо­го.

Если закон распределения вероятности результата измерений признан нормальным, то стандартное отклонение определяют как .

Если гипотеза о нормальности распределения отвергает­ся, то

 

.

 

5. Определить доверительный интервал.

Если закон распределения вероятности результата измерений признан нормальным, то доверительный интервал для заданной дове­рительной вероятности Р определяется из распределения Стьюдента Е = t×S, где t выбирается из соответствующих таблиц (таблица 1.1.2.8 [2] или таблица Д.1, при этом m = n – 1, а a = Р).

Если гипотеза о нормальности распределения отвергается, то t определяется из неравенства П. Л. Чебышева:

 

Р ³ 1 – 1/t2.

 

Задание3. Обработка результатов нескольких серий измерений

 

2.3.1 Условие задания

При многократных измерениях одной и той же величины получены две серии по 12 (nj) результатов измерений в каждой. Эти результаты после внесения поправок представлены в таблице 2. Вычислить результат многократных измерений.

Указания по выполнению

1. Серии в таблице 2 студент выбирает по предпоследней и пос­ледней цифрам шифра: например, шифру 96836 соответствуют все ре­зультаты измерений, которые приведены в строке 3 (серия 1) и столбце 6 (серия 2).

2. Результат измерения следует получить с достоверностью 0,95.

Порядок расчета

Обработку результатов двух серий измерений целесообразно осуществлять по алгоритмам [1, с. 122-129] (последовательность расчетов и их содержание определяются условием 10...15 < n < 40...50).

1. Обработать экспериментальные данные в каждой j-й серии отдельно по алгоритму, изложенному в задании 2 (алгоритм обработки многократных измерений), при этом:

– определить оценки результата измерения Qj и среднего квадратического отклонения sqj;

– обнаружить и исключить ошибки;

– проверить гипотезу о нормальности распределения оставшихся ре­зультатов измерений.

2. Проверить значимость различия средних арифметических се­рий по алгоритму, представленному на рисунке 48 [1]. Для этого следует:

– вычислить моменты закона распределения разности:

 

G = 1 - 2,

;

– задавшись доверительной вероятностью Р, определить из соответс­твующих таблиц интегральной функции нормированного нормального распределения Ф(t) (таблица 1.1.2.6.2 [2] или таблица Б.1) значение t;

– сравнить |G| с t × Sg.

Если |G| t · Sg, то различие между средними арифметическими в сериях с доверительной вероятностью Р можно признать незначимым.

3. Проверить равнорассеянность результатов измерений в сери­ях по алгоритму, изложенному на рисунке 50 [1]. Для этого необходимо:

– определить значение ;

– задавшись доверительной вероятностью Р, определить из соответ­ствующих таблиц (таблица 16 [1] или таблица Е.1) значение аргумента ин­тегральной функции распределения вероятности Фишера y0;

– сравнить y с y0.

Если y < y0, то серии с доверительной вероятностью Р счи­тают рассеянными.

4. Обработать совместно результаты измерения обеих серий с учетом того, однородны серии или нет.

Если серии однородны (равнорассеянны с незначимым различием средних арифметических), то все результаты измерения следует объ­единить в единый массив и выполнить обработку по алгоритму на рисунке 40 [1]. Для этого необходимо:

– определить оценку результата измерения и среднего квадратического отклонения S:

 

;

 

;

 

– задавшись доверительной вероятностью Р, определить из таблиц распределения Стьюдента (таблица 1.1.2.8 [2] или таблица Д.1) значение t для числа степеней свободы ;

– определить доверительный интервал Е = t×S.

Если серии не равнорассеянны с незначимым различием средних арифметических, то совместную обработку результатов измерений следует выполнять с учетом весовых коэффициентов по алгоритму, представленному на рисунке 51 [1].

Для этого необходимо:

– определить оценки результата измерения – и среднего квадратического отклонения S:

;

;

– аналогично предыдущему случаю, задавшись доверительной вероят­ностью Р, определить t и доверительный интервал.

Если различие средних арифметических в сериях признано зна­чимым, то результаты измерений в каждой серии следует обработать раздельно по алгоритму многократных измерений:

– в зависимости от закона распределения вероятности результата измерения в каждой серии определить Sj;

– задавшись доверительной вероятностью Р, определить по соответ­ствующим таблицам значение tj;

– рассчитать доверительный интервал Еj =Sj × tj.

 

Задание 4. Функциональные преобразования результатов

измерений (косвенные измерения)

 

2.4.1 Условие задания

При многократных измерениях независимых вели­чин X и У получено по 12 (n) результатов измерений. Эти результа­ты после внесения поправок представлены в таблице 2. Определить ре­зультат вычисления Z = f (X,У), (вид функции Z и характер величин X, У, Z представлены в таблице 3).

Указания по выполнению

1. Значения X и У студент выбирает, соответственно, по пред­последней и последней цифрам шифра: например, шифру 96836 соот­ветствуют значения X, представленные в строке 3 и значения У, представленные в столбце 6 таблицы 2.

2. Вид функции Z студент выбирает по последней цифре шифра, например, шифру 96836 соответствует функция Z, представленная в строке 6 таблицы 3.

3. При определении Z следует предварительно выразить значе­ния величин X и У в единицах системы СИ.

Порядок расчетa

Обработку экспериментальных данных при функциональном преоб­разовании результатов измерений целесообразно осуществлять по ал­горитму [1, с. 144 – 166]. При этом необходимо учитывать, что n = 12, следовательно, порядок расчетов и их со­держание определяются условием 10...15 < n < 40...50.

1. Обработать результаты измерений величин X и У отдельно по алгоритму, изложенному в п. п. 1-3 задания 2, при этом:

– определить оценки результатов измерений X, У и средних квадратических отклонений Sx, Sy;

обнаружить и исключить ошибки;

– проверить гипотезу о нормальности распределения оставшихся ре­зультатов измерений.

2. Определить оценку среднего значения функции:

 

.

 

3. Определить поправку:

 

.

 

Таблица 3 – Исходные данные

Последняя цифра шифра Z=f (X,Y) Характер и единицы величин
X Y Z
Z=X/Y напряжение, мВ сила тока, мкА сопротивление
Z=X2Y сила тока, мкА сопротивление, Ом мощность
Z=2X/Y2 перемещение, м время, мс ускорение
индуктивность, мкГн емкость, мкФ период колебаний
Z=3X/4p∙Y3 масса, мкг радиус сферы, мкм плотность материала
Z=X∙Y2/2 индуктивность, мкГн сила тока, мА энергия магнитного поля
Z=0,5X2/Y заряд, пКл емкость, пФ энергия конденсатора
Z=XY/(X+Y) сопротивление, Ом сопротивление, Ом сопротивление
Z=X/(Y+10) ЭДС, мВ сопротивление, Ом сила тока
масса, г жесткость, Н/м период колебаний

 

4. Определить оценку стандартного отклонения функции

 

,

 

где nx, ny – числа оставшихся результатов измерений, соответствен­но, X и Упосле исключения ошибок.

5. Определить доверительный интервал для функции

 

ЕZ = t×S.

 

Если законы распределения вероятности результатов измерения X и У признаны нормальными, то t можно определить для принятой доверительной вероятности Р из таблиц для распределения Стьюдента (таблица 1.1.2.8 [2] или таблица Д.1). При этом число степеней свободы m определятся из выражения

 

.

 

Если гипотеза о нормальности распределения результатов изме­рения X или (и) У отвергается, то t целесообразно определить из неравенства Чебышева:

 

.

 

Задание 5. Обработка экспериментальных данных при

Изучении зависимостей

 

2.5.1 Условие задания

При многократных совместных измерениях величин X и Y получено по 20 (n) пар результатов измерений. Эти результаты после внесения поправок представлены в таблице 4. Определить уравнение регрессии Y по X: Y = f (X).

Указания по выполнению

1. Серии экспериментальных данных студент выбирает из таблице 4 по предпоследней и последней цифрам шифра. Например, шифру 96836 соответствуют серии, включающие все результаты измерений X (числитель) и У (знаменатель), которые представлены в строке 3 и столбце 6.

2. Считать, что результаты измерений не содержат ошибок.

2.5.3 Порядок расчета

Обработку экспериментальных данных при изучении зависимостей целесообразно осуществлять по алгоритмам [4, с. 99-109].

1. В осях координат X и Y построить n экспериментальных то­чек с координатами Xi ,Yi, i Î (1…20) и по характеру расположе­ния точек принять гипотезу о виде уравнения регрессии Y на X.

 

Таблица 4 – Исходные данные

Предпоследняя цифра шифра Последняя цифра шифра

В качестве уравнения регрессии целесообразно использовать полином степени m:

 

Y = А + В∙Х + С∙Х2 + ... + К∙Хm.

 

В первом приближении для решения данной задачи рекомендуется принять m = 1, т.е.

 

Y = А + В∙Х.

 

2 Определить параметры уравнения регрессии по методу наи­меньших квадратов. Для этого необходимо:

– составить систему уравнений по числу рассчитываемых параметров:

 

; ; ; … ; ,

где .

Например, для линейного уравнения регрессии система уравнений имеет вид:

 

 

– решить систему уравнений и определить неизвестные параметры, например, для линейного уравнения регрессии решение имеет вид:

 

.

 

3. Проверить правильность выбора вида уравнения регрессии. Для этого следует применить непараметрические критерии серий и инверсий:

– рассчитать отклонения экспериментальных значений Yi от соответс­твующих значений Ypi, рассчитанных для того же аргумента Xi по по­лученному уравнению регрессии:

 

DYi = YiYpi ;

 

– построить в осях координат X, DY полученные значения DYi для со­ответствующих Xi;

– записать последовательность значений DYj по мере возрастания Xj, Xj Î [l,n];

– рассчитать число серий N в полученной последовательности DYj (под серией в данном случае понимают последовательность отклоне­ний одного знака, перед и после которой следуют отклонения про­тивоположного знака или нет вообще никаких отклонений);

– задавшись доверительной вероятностью Р ( уровнем значимости a = 1 – Р) для n = 20 определить по соответствующей таблице (таблица А.6 [4] или таблица Ж.1) допустимые границы N1-0,5a и N0,5a;

– рассчитать число инверсий А в полученной последовательности DYj (под инверсией понимается событие, заключающееся в том, что DYj > DYjk при k > j):

 

,

 

где Aj – это число инверсий j - гo члена последовательности, т.е. число членов последовательности, которые, будучи расположенными в последовательности после j - ого члена, имеют значение меньшее, чем DYj;

– задавшись доверительной вероятностью Р ( уровнем значимости a = 1 – Р) для n = 20 определить по соответствующей таблице (таблица А.7 [4] или таблица И.1) допустимые границы A1-0,5a и A0,5a;

– сравнить А с A1-0,5a и A0,5a;

Если выполняются неравенства

 

N1-0,5a < N £ N0,5a;

A1-0,5a < A £ A0,5a,

 

то с выбранной доверительной вероятностью Р можно считать, что отклонения экспериментальных значений Yi, от соответствующих зна­чений Yрi найденного уравнения регрессии являются случайными, не содержат аддитивного, мультипликативного или колебательного трендов, т.е. рассчитанное уравнение регрессии достоверно описывает экспериментально исследуемую зависимость между величинами X и Y.



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.