Сделай Сам Свою Работу на 5

Технические железоникелевые сплавы относятся к сталям аустенитного класса.





 

17.8. Сплавы с заданными упругими свойствами

 

В приборостроении для изготовления упругих элементов (пружин) требуется материал, обладающий высоким значением упругих свойств, достаточной пластичностью, прямолинейным кодом изменения модуля упругости в широком интервале температур, а также немагнитностью и коррозионной стойкостью.

К таким сплавам относятся:

- сплав 40KXHM (0,07-0,12 % С, 15-17 % Ni, 19-21 % Cr, 6,4-7,4 % Мо, 39-41 % Со). Это высокопрочный, с высокими упругими свойствами, немагнитный, коррозионностойкий в агрессивных средах сплав, который применяется для заводных пружин часовых механизмов,а также для витых цилиндрических пружин, работающих при температурах до 400 оС;

- сплав 42НХТЮ ( < 0,05 % С, ~42 % Ni). Это высокопрочный сплав с низким температурным коэффициентом модуля упругости при температуре до 100 оС, который применяется для упругих чувствительных элементов, работающих до температуры +100 оС.

 

18. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ

 

18.1. Медные сплавы

 

Медные сплавы делятся на две группы:

- латуни. Это сплавы меди с цинком. Цинк повышает прочность и пластичность сплава. Максимальной пластичностью обладает сплав с 30 % Zn.



Латуни (в особенности однофазные) легко поддаются деформации и поэтому из латуни изготавливают катаный полуфабрикат (листы, ленты, профили и т.д.). Латуни с содержанием цинка до 40 % пластичны, хорошо обрабатываются давлением в горячем состоянии, коррозионностойки.

Кроме простых латуней – сплавов только меди и цинка, применяют специальные латуни, в которых для придания тех или иных свойств дополнительно вводят различные элементы: свинец для улучшения обрабатываемости (автоматная латунь ЛС59, содержащая 40 % Zn и 1-2 % Pb), олово для повышения сопротивления коррозии в морской воде (морская латунь), алюминий и никель для повышения механических свойств.

Практически применяемые латуни в зависимости от структуры при комнатной температуре разделяются на две категории:

- α – латуни, содержащие меди не менее 61 %. Марки этих латуней Л62, Л68 и др. Их изготавливают в виде тонких листов, лент др. α – Латуни с более высоким содержанием меди (Л80) имеют цвет золота, и их применяют для ювелирных и декоративных изделий. Латуни, содержащие высокий процент меди, называют томпаком.



- α + β – латуни, содержащие 55 – 61 % меди. Наиболее распространенная марка Л59, из которой изготавливают прутки, а из них с помощью обработки резанием – различные детали.

Латуни с содержанием цинка до 40 % - пластичны, хорошо обрабатываются давлением в горячем состоянии, коррозионностойки.

- бронзы. Это сплавы меди с оловом, алюминием, кремнием и другими элементами, обладающие хорошими литейными свойствами (малой усадкой) и использующиеся как антифрикционные сплавы.

Маркировка бронзы: БрОЦС8-4-3, содержащая 8 % Sn, 4 % Zn, 3 % Pb, остальное - медь.

В зависимости от вида легирующего элемента различают:

- оловянистые бронзы , содержащие до 5 % Sn. Они устойчивы к действию атмосферы, морской воды;

- алюминиевые бронзы, содержащие 9-11 % А1. Они обладают хорошими технологическими и механическими свойствами. Их применяют для изготовления зубчатых колес, сальников, деталей турбин;

- кремнистые бронзы, содержащие 1-3 % А1. Они обладают хорошими литейными и антикоррозионными свойствами, высокой упругостью, выносливостью;

- бериллиевые бронзы, содержащие 2-2,5 % Ве; 0,5 % Ni,остальное медь. Эти бронзы относятся к разряду дорогих и используются в приборостроении для изготовления пружин, мембран и др.

- медно-никелевые сплавы, в которых основным легирующим элементом является никель. Эти сплавы можно разделить на конструкционные и электротехнические.

К первой группе относятся коррозионно-стойкие и высокопрочные сплавы типа мельхиор (МНЖМц30-1-1), нейзильбер (МНЦ15-20), куниаль (МНА13-3). В качестве дополнительных легирующих элементов в них добавляют Mn, Al, Zn, Fe, Co, Pb. Изготавливают из этих сплавов украшения, столовые и чайные приборы.



- сплав монель, содержащий 66 % Ni + 28 % Cu + Mn + Fe. Он применяется для изготовления монет, хирургического инструмента, так как обладает высокой коррозионной стойкостью, прочностью, хорошей обрабатываемостью.

 

18.2. Алюминиевые сплавы

 

Алюминий - один из наиболее легких конструкционных металлов (ρ = 2,7кг/м3). Он обладает высокой пластичностью. В чистом виде алюминий имеет небольшую прочность, кристаллическую решётку ГЦК с параметром а = 0,404 Нм и обладает высокой коррозионной стойкостью из-за образования на поверхности пленки, содержащей химическое соединение Al2O3.

Алюминий и его сплавы используют в качестве проводниковых материалов (провода в быту). Электропроводность равна 34*10 Ом-1* см-1, что составляет 57 % от электропроводности меди. В электротехнике используют алюминий марок A00 (99,7 %), А0 (99,6 %) и Al(99,5 %).

По технологическому признаку алюминиевые сплавы делятся на деформируемые (термически не упрочняемые и упрочняемые) и литейные (рис. 18.1).

Рис. 18.1. Классификация алюминиевых сплавов по диаграмме состояния (а) и технологические свойства сплавов с ограниченной

растворимостью (б – г)

 

Как видно из рисунка 18.1. различные участки диаграммы соответствуют:

1 – сплавам, не упрочняемым термической обработкой;

2 – сплавам, упрочняемым термической обработкой;

3 – изменению пластичности;

I – образованию рассеянных пор;

II- образованию сконцентрированных пор.

 

К деформируемым алюминиевым сплавам относятся:

- сплавы алюминия с марганцем АМц (АМц3) и сплавы алюминия с магнием АМг (Амг6). Марганец и магний повышают прочность алюминия в три раза. Используют эти сплавы при изготовлении сварных емкостей для горючего, азотной и других кислот, трубопроводов, средне-нагруженных деталей конструкций;

- дюралюмины - сплавы алюминия с медью (2,2-4,8 %),магнием (0,4-2,4 %), марганцем (0,4-0,8 %). Это термически упрочняемые сплавы. Обозначение дюралюминов: Д1, Д6, Д16 (номера условные).

Для защиты дюралюминов от коррозии используют так называемое плакирование (покрытие тонким защитным слоем из чистого алюминия);

- сплав В95 - наиболее прочный алюминиевый сплав (2 % Си, 2,5 % Mg, 0,5 % Mn; 6 % Zn, 0,15 % Сr, 0,5 %Si, 0,5 % Fe) и используется он для изготовления элементов летательных аппаратов;

- ковочные сплaвы (АК) для деталей, изготавливаемых ковкой и давлением. Обозначение: АК1, АК5 (номер условный).

Эти сплавы обладают способностью сохранять механические свойства при повышенных температурах.

К литейным алюминиевым сплавам относятся сплавы алюминия с кремнием (так называемые силумины), содержащие 4-13 % Si.

Силумины маркируют: АЛ2, АЛ13 (порядковый номер). Применяют такие сплавы для изготовления литых деталей приборов, корпусов турбонасосов, тонкостенных отливок сложной формы.

В настоящее время вводится единая цифровая маркировка алюминиевых сплавов. Первая цифра обозначает основу всех сплавов (алюминию присвоена цифра 1); вторая – главный легирующий элемент или группа главных легирующих элементов; третья или третья со второй – соответствует старой маркировке; четвертая цифра – нечетная (включая 0) указывает, что сплав деформируемый, четная – что сплав литейный.

Например, сплав Д1 обозначают 1110, Д16 – 1160, АК4 1140, Амг5 – 1550, АК6- 1360 и т. д. Некоторые новые сплавы имеют только цифровую маркировку – 1915, 1925 и др.

 

18.3. Магниевые сплавы

 

В качестве легирующих добавок в магниевых сплавах используют алюминий, цинк и марганец, растворяющиеся в магнии. Растворимость падает с уменьшением температуры, что позволяет применять для этих сплавов термическую обработку, заключающуюся в закалке с последующим старением.

Магниевые сплавы делятся на деформируемые (МА) и литейные (МЛ). Эти сплавы очень легкие и используются для изготовления деталей в авиастроении.

18.4. Титан и его сплавы.

 

Титан – это серебристо-белый металл с малой плотностью (4,5 г/см3) и высокой температурой плавления (1672 оС), имеющий две аллотропические модификации: α – низкотемпературную с плотноупакованной гексагональной решёткой и β – высокотемпературную с кубической объёмноцентрированной решёткой. Температура перехода α ↔ β равна 882 оС.

Для улучшения прочностных и пластических свойств титан легируется различными элементами, содержание которых, в общей сложности, не превышает 10 –15 %. Легирующие элементы смещают температуру аллотропического превращения титана. Алюминий, кислород, азот, углерод стабилизируют α –фазу ; железо, молибден, тантал, вольфрам, хром, марганец, никель стабилизируют β –фазу;

Титан имеет высокую коррозионную стойкость в большом количестве агрессивных сред, превосходя в этом отношении нержавеющую сталь. При нагреве до 500 оС титан становится активным и поглощает из атмосферы газы (кислород, азот, водород), что сильно влияет на его механические свойства.

Технический титан маркируется в зависимости от содержания примесей: BT1-00 (сумма примесей менее 0,398 %), ВТ1-0 (сумма примесей менее 0,55 %).

Титановые сплавы классифицируются:

- по технологии изготовления на деформируемые, литейные и изготовленные методами порошковой металлургии. Для маркировки деформируемых титановых сплавов используется буквенно-цифровой код:

- ОТ4-0, ОТ4-1, ОТ4 - сплавы, в которых основными легирующими добавками являются алюминий и марганец;

- ВТ5, ВТ5-1, ВТ3-1, ВТ6, ВТ9 и т.д. – сплавы, легированные алюминием или алюминием и вольфрамом.

Стоящие за буквами цифры являются условным порядковым номером.

Особенности маркировки литейных титановых сплавов – наличие буквы Л в конце обозначения марки: ВТ5Л, ВТ3-1Л и др.

Для изготовления деталей методом порошковой металлургии используют сплавы ВТ5, ВТ5-1, ОТ4 и др. Порошковые сплавы маркируются так же, как и деформируемые.

Литейные сплавы титана обладают более низкими механическими свойствами, чем соответствующие деформируемые;

- по способу упрочнения на термически упрочняемые и не упрочняемые термической обработкой;

- по структуре на однофазные α – сплавы (не содержат b-стабилизаторов); псевдо –а - сплавы (коэффициент b- стабилизации не более 0,25); (a + b)-сплавы (коэффициент b-стабилизации от 0,3 до 0,9); псевдо-b-сплавы (коэффициент b-стабилизации от 1,4 до 4,4) и b-сплавы (коэффициент b-стабилизации > 2,5).

Преимуществом титановых сплавов, по сравнению с техническим титаном, являются следующие свойства:

- сочетание высокой прочности (σв = 800-1500 МПа) с хорошей пластичностью (δ = 18-25 %);

- малая плотность и высокая удельная прочность (σв/γ до 40);

- хорошая жаропрочность (до 600-700 оС);

- высокая коррозионная стойкость;

- низкая пластичность при комнатной температуре;

- высокая чувствительность к поверхностным дефектам.

Все титановые сплавы подвергаются термообработке, ХТО и ТМО и для повышения их износостойкости возможно применение цементации и азотирования.

Основными недостатками титана и его сплавов являются:

- высокая способность при повышенных температурах к взаимодействию со всеми газами, а также с материалами плавильных печей;

- невысокие антифрикционные свойства;

- плохая обрабатываемость резанием;

- невысокая жесткость конструкции из-за низкого значения модуля упругости.

Титановые сплавы используют в авиа- и ракетостроении (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа, фюзеляжа), в химической промышленности (компрессоры, клапаны, вентили), в изготовлении криогенной техники.

 

18.5. Антифрикционные сплавы

 

Антифрикционные сплавы применяют для изготовления подшипников качения и скольжения. К таким сплавам предъявляются следующие требования:

- низкий коэффициент трения;

- хорошая прирабатываемость;

- микрокапиллярность для смазки;

- хорошая теплопроводность.

К антифрикционным сплавам относятся:

- свинцовистые бронзы (до 25-30 % РЬ) (БрС30 И БРОС5-25;

- антифрикционные чугуны (чугун с перлитной основой и повышенным количеством графита);

- баббиты - сплавы олова с сурьмой и медью (Б88, Б89),а также сплавы свинца с кальцием и натрием (Б16, БКА).

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.