Кислота – это сложное вещество, в молекуле которого имеется один или несколько атомов водорода и кислотный остаток.
Свойства кислот определяются тем, что они способны заменять в своих молекулах атомы водорода на атомы металлов. Например:
H2SO4
| +
| Mg
| =
| MgSO4
| +
| H2
| серная кислота
|
| металл
|
| соль
|
| водород
|
H2SO4
| +
| MgO
| =
| MgSO4
| +
| H2O
| серная кислота
|
| оксид
|
| соль
|
| вода
| Давайте на примере серной кислоты рассмотрим ее образование из кислотного оксида SO3, а затем реакцию серной кислоты с магнием. Валентности всех элементов, участвующих в реакции, нам известны, поэтому напишем соединения в виде структурных формул:
Эти примеры позволяют легко проследить связь между кислотным оксидом SO3, кислотой H2SO4 и солью MgSO4.Одно "рождается" из другого, причем атом серы и атомы кислорода переходят из соединения одного класса (кислотный оксид) в соединения других классов (кислота, соль).
Кислоты классифицируют по таким признакам: а) по наличию или отсутствию кислорода в молекуле и б) по числу атомов водорода.
По первому признаку кислоты делятся на кислородсодержащие и бескислородные (табл. 8-1).
Таблица 8-1. Классификация кислот по составу.
Кислородсодержащие кислоты
| Бескислородные кислоты
| H2SO4 серная кислота
H2SO3 сернистая кислота
HNO3 азотная кислота
H3PO4 фосфорная кислота
H2CO3 угольная кислота
H2SiO3 кремниевая кислота
| HF фтороводородная кислота
HCl хлороводородная кислота (соляная кислота)
HBr бромоводородная кислота
HI иодоводородная кислота
H2S сероводородная кислота
| По количеству атомов водорода, способных замещаться на металл, все кислоты делятся на одноосновные (с одним атомом водорода), двухосновные (с 2 атомами Н) и трехосновные (с 3 атомами Н), как показано в табл. 8-2:
Таблица 8-2. Классификация кислот по числу атомов водорода.
| К И С Л О Т Ы
|
| Одноосновные
| Двухосновные
| Трехосновные
| HNO3 азотная
HF фтороводородная
HCl хлороводородная
HBr бромоводородная
HI иодоводородная
| H2SO4 серная
H2SO3 сернистая
H2S сероводородная
H2CO3 угольная
H2SiO3 кремниевая
| H3PO4 фосфорная
| ** Термин "одноосновная кислота" возник потому, что для нейтрализации одной молекулы такой кислоты требуется "одно основание", т.е. одна молекула какого-либо простейшего основания типа NaOH или KOH:
HNO3 + NaOH = NaNO3 + H2O
HCl + KOH = KCl + H2O
Двухосновная кислота требует для своей нейтрализации уже "два основания", а трехосновная – "три основания":
H2SO4 + 2 NaOH = Na2SO4 + 2 H2O
H3PO4 + 3 NaOH = Na3PO4 + 3 H2O
Рассмотрим важнейшие химические свойства кислот.
1. Действие растворов кислот на индикаторы. Практически все кислоты (кроме кремниевой) хорошо растворимы в воде. Растворы кислот в воде изменяют окраску специальных веществ – индикаторов. По окраске индикаторов определяют присутствие кислоты. Индикатор лакмус окрашивается растворами кислот в красный цвет, индикатор метиловый оранжевый – тоже в красный цвет.
Индикаторы представляют собой вещества сложного строения. В растворах оснований и в нейтральных растворах они имеют иную окраску, чем в растворах кислот. Об индикаторах мы более подробно расскажем в следующем параграфе на примере их реакций с основаниями.
2. Взаимодействие кислот с основаниями. Эта реакция, как вы уже знаете, называется реакцией нейтрализации. Кислота реагируют с основанием с образованием соли, в которой всегда в неизменном виде обнаруживается кислотный остаток. Вторым продуктом реакции нейтрализации обязательно является вода. Например:
кислота
|
| основание
|
| соль
|
| вода
| H2SO4
| +
| Ca(OH)2
| =
| CaSO4
| +
| 2 H2O
| H3PO4
| +
| Fe(OH)3
| =
| FePO4
| +
| 3 H2O
| 2 H3PO4
| +
| 3 Ca(OH)2
| =
| Ca3(PO4)2
| +
| 6 H2O
| Для реакций нейтрализации достаточно, чтобы хотя бы одно из реагирующих веществ было растворимо в воде. Поскольку практически все кислоты растворимы в воде, они вступают в реакции нейтрализации не только с растворимыми, но и с нерастворимыми основаниями. Исключением является кремниевая кислота, которая плохо растворима в воде и поэтому может реагировать только с растворимыми основаниями – такими как NaOH и KOH:
H2SiO3 + 2 NaOH = Na2SiO3 + 2H2O
3. Взаимодействие кислот с основными оксидами. Поскольку основные оксиды – ближайшие родственники оснований – с ними кислоты также вступают в реакции нейтрализации:
кислота
|
| оксид
|
| соль
|
| вода
| 2 HCl
| +
| CaO
| =
| CaCl2
| +
| H2O
| 2 H3PO4
| +
| Fe2O3
| =
| 2 FePO4
| +
| 3 H2O
| Как и в случае реакций с основаниями, с основными оксидами кислоты образуют соль и воду. Соль содержит кислотный остаток той кислоты, которая использовалась в реакции нейтрализации.
Например, фосфорную кислоту используют для очистки железа от ржавчины (оксидов железа). Фосфорная кислота, убирая с поверхности металла его оксид, с самим железом реагирует очень медленно. Оксид железа превращается в растворимую соль FePO4, которую смывают водой вместе с остатками кислоты.
4. Взаимодействие кислот с металлами. Как мы видим из предыдущего примера, для взаимодействия кислот с металлом должны выполняться некоторые условия (в отличие от реакций кислот с основаниями и основными оксидами, которые идут практически всегда).
Во-первых, металл должен быть достаточно активным (реакционноспособным) по отношению к кислотам. Например, золото, серебро, медь, ртуть и некоторые другие металлы с выделением водорода с кислотами не реагируют. Такие металлы как натрий, кальций, цинк – напротив – реагируют очень активно с выделением газообразного водорода и большого количества тепла.
кислота
|
| металл
|
| соль
|
|
| HCl
| +
| Hg
| =
| не образуется
| |
| 2 HCl
|
| 2 Na
| =
| 2 NaCl
| +
| H2
| H2SO4
| +
| Zn
| =
| ZnSO4
| +
| H2
| По реакционной способности в отношении кислот все металлы располагаются в ряд активности металлов (табл. 8-3). Слева находятся наиболее активные металлы, справа – неактивные. Чем левее находится металл в ряду активности, тем интенсивнее он взаимодействует с кислотами.
Табл. 8-3. Ряд активности металлов.
Металлы, которые вытесняют водород из кислот
| Металлы, которые не вытесняют водород из кислот
| K Ba Ca Na Mg Al Mn Zn Cr Fe Ni Sn Pb (H)
самые активные металлы
| Cu Hg Ag Pt Au
самые неактивные металлы ®
| Во-вторых, кислота должна быть достаточно сильной, чтобы реагировать даже с металлом из левой части табл. 8-3. Под силой кислоты понимают ее способность отдавать ионы водорода H+.
Например, кислоты растений (яблочная, лимонная, щавелевая и т.д.) являются слабыми кислотами и очень медленно реагируют с такими металлами как цинк, хром, железо, никель, олово, свинец (хотя с основаниями и оксидами металлов они способны реагировать).
С другой стороны, такие сильные кислоты как серная или соляная (хлороводородная) способны реагировать со всеми металлами из левой части табл. 8-3.
В связи с этим существует еще одна классификация кислот – по силе. В таблице 8-4 в каждой из колонок сила кислот уменьшается сверху вниз.
Таблица 8-4. Классификация кислот на сильные и слабые кислоты.
Сильные кислоты
| Слабые кислоты
| HI иодоводородная
HBr бромоводородная
HCl хлороводородная
H2SO4 серная
HNO3 азотная
| HF фтороводородная
H3PO4 фосфорная
H2SO3 сернистая
H2S сероводородная
H2CO3 угольная
H2SiO3 кремниевая
| ** Следует помнить, что в реакциях кислот с металлами есть одно важное исключение. При взаимодействии металлов с азотной кислотой водород не выделяется. Это связано с тем, что азотная кислота содержит в своей молекуле сильный окислитель – азот в степени окисления +5. Поэтому с металлами в первую очередь реагирует более активный окислитель N+5, а не H+, как в других кислотах. Выделяющийся все же в каком-то количестве водород немедленно окисляется и не выделяется в виде газа. Это же наблюдается и для реакций концентрированной серной кислоты, в молекуле которой сера S+6 также выступает в роли главного окислителя. Состав продуктов в этих окислительно-восстановительных реакциях зависит от многих факторов: активности металла, концентрации кислоты, температуры. Например:
Cu + 4 HNO3(конц.) =Cu(NO3)2 + 2 NO2 + 2 H2O
3 Cu + 8HNO3(разб.) = 3 Cu(NO3)2 + 2 NO + 4 H2O
8 K + 5 H2SO4(конц.) = 4 K2SO4 + H2S + 4 H2O
3 Zn + 4 H2SO4(конц.) = 3 ZnSO4 + S + 4 H2O
Есть металлы, которые реагируют с разбавленными кислотами, но не реагирует с концентрированными (т.е.безводными) кислотами – серной кислотой и азотной кислотой.
Эти металлы – Al, Fe, Cr, Ni и некоторые другие – при контакте с безводными кислотами сразу же покрываются продуктами окисления (пассивируются). Продукты окисления, образующие прочные пленки, могут растворяться в водных растворах кислот, но нерастворимы в кислотах концентрированных.
Это обстоятельство используют в промышленности. Например, концентрированную серную кислоту хранят и перевозят в железных бочках.
Задачи.
8.10. Напишите реакции нейтрализации между кислотами и основаниями, в результате которых получаются следующие соли: Al2(SO4)3, NiCO3, Fe(NO3)3, Mg3(PO4)2, PbS, Li2SO4.
8.11. Сколько P2O5 необходимо для получения 392 кг фосфорной кислоты H3PO4 ?
** 8.12 (ФМШ). При растворении в H2SO4 10,48 г смеси оксидов CuO и ZnO образовалось 20,88 г смеси безводных сульфатов CuSO4 и ZnSO4. Определите состав взятой смеси.
** 8.13. Напишите формулы водородных соединений пяти элементов главной подгруппы VI группы. Все они в той или иной мере являются кислотами. Исходя из закономерностей Периодической таблицы, расположите эти кислоты в ряд от самой слабой до самой сильной кислоты.Соли. Получение и химические свойства.
Рассмотрим важнейшие способы получения солей.
1. Реакция нейтрализации. Этот способ уже неоднократно встречался в предыдущих параграфах. Растворы кислоты и основания смешивают (осторожно!) в нужном мольном соотношении. После выпаривания воды получают кристаллическую соль. Например:
H2SO4
| +
| 2 KOH
| =
| K2SO4
| +
| 2 H2O
|
|
|
|
| сульфат калия
|
|
| 2. Реакция кислот с основными оксидами. Этот способ получения солей упоминался в параграфе 8-3. Фактически, это вариант реакции нейтрализации. Например:
H2SO4
| +
| CuO
| =
| CuSO4
| +
| H2O
|
|
|
|
| сульфат меди
|
|
| 3. Реакция оснований с кислотными оксидами (см. параграф 8.2). Это также вариант реакции нейтрализации:
Ca(OH)2
| +
| CO2
| =
| CaCO3↓
| +
| H2O
|
|
|
|
| карбонат кальция
|
|
| Если пропускать в раствор избыток СО2, то получается избыток угольной кислоты и нерастворимый карбонат кальция превращается в растворимую кислую соль – гидрокарбонат кальция Са(НСО3)2:
СаСО3 + Н2СО3 = Са(НСО3)2 (раствор)
4. Реакция основных и кислотных оксидов между собой:
CaO
| +
| SO3
| =
| CaSO4
|
|
|
|
| сульфат кальция
| 5. Реакция кислот с солями. Этот способ подходит, например, в том случае, если образуется нерастворимая соль, выпадающая в осадок:
H2S
| +
| CuCl2
| =
| CuS↓ (осадок)
| +
| 2 HCl
|
|
|
|
| сульфид меди
|
|
| 6. Реакция оснований с солями. Для таких реакций подходят только щелочи (растворимые основания). В этих реакциях образуется другое основание и другая соль. Важно, чтобы новое основание не было щелочью и не могло реагировать с образовавшейся солью. Например:
3 NaOH
| +
| FeCl3
| =
| Fe(OH)3↓
| +
| 3 NaCl
|
|
|
|
| (осадок)
|
| хлорид натрия
| 7. Реакция двух различных солей. Реакцию удается провести только в том случае, если хотя бы одна из образующихся солей нерастворима и выпадает в осадок:
AgNO3
| +
| KCl
| =
| AgCl↓ (осадок)
| +
| KNO3
|
|
|
|
| хлорид серебра
|
| нитрат калия
| Выпавшую в осадок соль отфильтровывают, а оставшийся раствор упаривают и получают другую соль. Если же обе образующиеся соли хорошо растворимы в воде, то реакции не происходит: в растворе существуют лишь ионы, не взаимодействующие между собой:
NaCl + KBr = Na+ + Cl- + K+ + Br-
Если такой раствор упарить, то мы получим смесь солей NaCl, KBr, NaBr и KCl, но чистые соли в таких реакциях получить не удается.
8. Реакция металлов с кислотами. В способах 1 – 7 мы имели дело с реакциями обмена (только способ 4 – реакция соединения. Но соли образуются и в окислительно-восстановительных реакциях. Например, металлы, расположенные левее водорода в ряду активности металлов (таблица 8-3), вытесняют из кислот водород и сами соединяются с ними, образуя соли:
Fe
| +
| H2SO4(разб.)
| =
| FeSO4
| +
| H2
|
|
|
|
| сульфат железа II
|
|
| 9. Реакция металлов с неметаллами. Эта реакция внешне напоминает горение. Металл "сгорает" в токе неметалла, образуя мельчайшие кристаллы соли, которые выглядят, как белый "дым":
2 K
| +
| Cl2
| =
| 2 KCl
|
|
|
|
| хлорид калия
| 10. Реакция металлов с солями. Более активные металлы, расположенные в ряду активности левее, способны вытеснять менее активные (расположенные правее) металлы из их солей:
Zn
| +
| CuSO4
| =
| Cu
| +
| ZnSO4
|
|
|
|
| порошок меди
|
| сульфат цинка
| Теперь рассмотрим химические свойства солей.
Наиболее распространенные реакции солей – реакции обмена и окислительно-восстановительные реакции. Сначала рассмотрим примеры окислительно-восстановительных реакций.
1. Окислительно-восстановительные реакции солей.
Поскольку соли состоят из ионов металла и кислотного остатка, их окислительно-восстановительные реакции условно можно разбить на две группы: реакции за счет иона металла и реакции за счет кислотного остатка, если в этом кислотном остатке какой-либо атом способен менять степень окисления.
а) Реакции за счет иона металла.
Поскольку в солях содержится ион металла в положительной степени окисления, они могут участвовать в окислительно-восстановительных реакциях, где ион металла играет роль окислителя. Восстановителем чаще всего служит какой-нибудь другой (более активный) металл. Приведем пример:
Hg2+SO4
| +
| Sn0
| =
| Hg0
| +
| Sn2+SO4
| соль менее активного металла (окислитель)
|
| более активный металл (восстановитель)
|
|
|
|
| Принято говорить, что более активные металлы способны вытеснять другие металлы из их солей. Металлы, находящиеся в ряду активности левее , являются более активными. Нетрудно заметить, что это те же реакции металлов с солями (см. пункт 10 предыдущего раздела).
б) Реакции за счет кислотного остатка.
В кислотных остатках часто имеются атомы, способные изменять степень окисления. Отсюда – многочисленные окислительно-восстановительные реакции солей с такими кислотными остатками. Например:
Na2S–2
| +
| Br20
| =
| S0
| +
| 2 NaBr–1
| соль сероводородной кислоты
|
|
|
| сера
|
|
|
2 KI–1
| +
| H2O2–1
| +
| H2SO4
| =
| I20
| +
| K2SO4
| +
| 2 H2O–2
| соль иодоводородной кислоты
|
|
|
|
|
| иод
|
|
|
|
|
2 KMn+7O4
| +
| 16 HCl–1
| =
| 5 Cl20
| +
| 2 KCl
| +
| 2 Mn+2Cl2
| +
| 8 H2O
| соль марганцовой кислоты
|
|
|
|
|
|
|
| хлорид марганца
|
|
|
2 Pb(N+5O3–2)2
| =
| 2 PbO
| +
| 4 N+4O2
| +
| O20
| соль азотной кислоты
| при нагревании
|
|
|
|
|
| 2. Обменные реакции солей.
Такие реакции могут происходить в растворах, когда соли реагируют: а) с кислотами, б) с щелочами, в) с другими солями. Например:
а) CuSO4 + H2S = CuS↓ (осадок) + H2SO4
AgNO3 + HCl = AgCl↓ (осадок) + HNO3
б) FeCl3 + 3 NaOH = Fe(OH)3↓ (осадок) + 3 NaCl
CuSO4 + 2 KOH = Cu(OH)2↓ (осадок) + K2SO4
в) BaCl2 + K2SO4 = BaSO4↓ (осадок) + 2 KCl
CaCl2 + Na2CO3 = CaCO3↓ (осадок) + 2 NaCl
Некоторые из этих реакций уже встречались в опытах из первой части параграфа.
Во всех случаях один из продуктов обменной реакции обязательно должен покидать реакционную смесь в виде осадка или газообразного вещества. Либо должно получаться прочное соединение, не распадающееся в растворе на ионы (например, вода в реакции нейтрализации). Если эти условия не выполняется, то при смешивании реагентов в лучшем случае образуется смесь не реагирующих между собой ионов - реакция не идет.
Задачи
8.27 (ФМШ). Продолжите уравнения реакций и уравняйте их. Если есть продукты, выпадающие в осадок или выделяющиеся в виде газа, поставьте после них стрелку вниз или вверх.
1) AgNO3 + FeCl3 =
2) Pb(NO3)2 + K2S =
3) Ba(NO3)2 + Al2(SO4)3 =
4) CaCl2 + Na3PO4 =
5) Na2S + HCl =
6) (NH4)2SO4 + KOH =
7) K2CO3 + H2SO4 =
8) Ba(HCO3)2 + H2SO4 =
9) Al2O3 + KOH (избыток) =
10) SiO2 + NaOH =
11) NaHCO3 + HCl =
12) NaHCO3 + NaOH =
13) [Cu(OH)]2SO4 + KOH =
14) [Cu(OH)]2SO4 + H2SO4 =
15) MgO + HBr =
16) MgO + SO3 =
17) K2S + HNO3 = кислая соль + ...
18) Mg(OH)2 + H2SO4 = основная соль + ...
19) FeSO4 + KMnO4 + ... = MnSO4 + ...
20) K2SO3 + K2Cr2O7 + H2SO4 =
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|