Сделай Сам Свою Работу на 5

Природа парникового эффекта





Землеведение, билет № 26

Строение атмосферы смотри в тетради.

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.



Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.



Термосфера

Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности — например, в 2008—2009 гг — происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Атмосферные слои до высоты 120 км

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.



На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Землеведение, билет № 27

Парнико́вый эффе́кт — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса.

История исследований

Идея о механизме парникового эффекта была впервые изложена в1827 году Жозефом Фурье в статье «Записка о температурах земного шара и других планет», в которой он рассматривал различные механизмы формирования климата Земли, при этом он рассматривал как факторы, влияющие на общий тепловой баланс Земли (нагрев солнечным излучением, охлаждение за счёт лучеиспускания, внутреннее тепло Земли), так и факторы, влияющие на теплоперенос и температуры климатических поясов (теплопроводность, атмосферная и океаническая циркуляция).

При рассмотрении влияния атмосферы на радиационный баланс Фурье проанализировал опыт М. де Соссюра с зачернённым изнутри сосудом, накрытым стеклом. Де Соссюр измерял разность температур внутри и снаружи такого сосуда, выставленного на прямой солнечный свет. Фурье объяснил повышение температуры внутри такого «мини-парника» по сравнению с внешней температурой действием двух факторов: блокированием конвективного теплопереноса (стекло предотвращает отток нагретого воздуха изнутри и приток прохладного снаружи) и различной прозрачностью стекла в видимом и инфракрасном диапазоне.

Именно последний фактор и получил в позднейшей литературе название парникового эффекта — поглощая видимый свет, поверхность нагревается и испускает тепловые (инфракрасные) лучи; поскольку стекло прозрачно для видимого света и почти непрозрачно для теплового излучения, то накопление тепла ведёт к такому росту температуры, при котором количество проходящих через стекло тепловых лучей достаточно для установления теплового равновесия.

Фурье постулировал, что оптические свойства атмосферы Земли аналогичны оптическим свойствам стекла, то есть её прозрачность в инфракрасном диапазоне ниже, чем прозрачность в диапазоне оптическом, однако количественные данные по поглощению атмосферы в инфракрасном диапазоне долгое время являлись предметом дискуссий.

В 1896 году Сванте Аррениус, шведский физико-химик, для количественного определения поглощении атмосферой Земли теплового излучения проанализировал данные Сэмюэла Лэнгли о болометрической светимости Луны в инфракрасном диапазоне. Аррениус сравнил данные, полученные Лэнгли при разных высотах Луны над горизонтом (т.е. при различных величинах пути излучения Луны через атмосферу), с расчетным спектром ее теплового излучения и рассчитал как коэффициенты поглощения инфракрасного излучения водяным паром и углекислым газом в атмосфере, так и изменения температуры Земли при вариациях концентрации углекислого газа. Аррениус также выдвинул гипотезу, что снижение концентрации в атмосфере углекислого газа может являться одной из причин возникновения ледниковых периодов.

Количественное определение парникового эффекта

Суммарная энергия солнечного излучения, поглощаемого в единицу времени планетой радиусом и сферическим альбедо равна:

,

где - солнечная постоянная, и - расстояние до Солнца.

В соответствии с законом Стефана — Больцмана равновесное тепловое излучение планеты с радиусом , т. е. площадью излучающей поверхности :

,

где - эффективная температура планеты.

Количественно величина парникового эффекта определяется как разница между средней приповерхностной температурой атмосферы планеты и её эффективной температурой Парниковый эффект существенен для планет с плотными атмосферами, содержащими газы, поглощающие излучение в инфракрасной области спектра, и пропорционален плотности атмосферы. Следствием парникового эффекта является также сглаживание температурных контрастов как между полярными и экваториальными зонами планеты, так и между дневными и ночными температурами.

Таблица 1
Планета Атм. давление у поверхности, атм.
Венера - - -
Земля
Луна    
Марс 0,006

Температуры даны в Кельвинах, — средняя максимальная температура в полдень на экваторе, — средняя минимальная температура.

Природа парникового эффекта

Парниковый эффект атмосфер обусловлен их различной прозрачностью в видимом и дальнем инфракрасном диапазонах. На диапазон длин волн 400—​1500 нм в видимом свете и ближнем инфракрасном диапазоне приходится 75 % энергии солнечного излучения, большинство газов не поглощают в этом диапазоне; рэлеевское рассеяние в газах и рассеяние на атмосферных аэрозолях не препятствуют проникновению излучения этих длин волн в глубины атмосфер и достижению поверхности планет. Солнечный свет поглощается поверхностью планеты и её атмосферой (особенно излучение в ближней УФ- и ИК-областях) и разогревает их. Нагретая поверхность планеты и атмосфера излучают в дальнем инфракрасном диапазоне: так, в случае Земли при равном 300 K, 75 % теплового излучения приходится на диапазон 7,8—28 мкм, для Венерыпри равном 700 K — 3,3—12 мкм.

Атмосфера, содержащая многоатомные газы (двухатомные газы диатермичны - прозрачны для теплового излучения), поглощающие в этой области спектра (т.н. парниковые газы — H2O, CO2, CH4 и пр.), существенно непрозрачна для такого излучения, направленного от её поверхности в космическое пространство, то есть имеет в ИК-диапазоне большую оптическую толщину. Вследствие такой непрозрачности атмосфера становится хорошим теплоизолятором, что, в свою очередь, приводит к тому, что переизлучение поглощённой солнечной энергии в космическое пространство происходит в верхних холодных слоях атмосферы. В результате эффективная температура Земли как излучателя оказывается более низкой, чем температура её поверхности.

Влияние парникового эффекта на климат планет

Степень влияния парникового эффекта на приповерхностные температуры планет (при оптической толщине атмосферы < 1) зависит отоптической плотности

парниковых газов и, соответственно, их парциального давления у поверхности планеты. Таким образом, парниковый эффект наиболее выражен у планет с плотной атмосферой, составляя у Венеры ~500 K.
Таблица 2
Планета Атм. давление у поверхности, атм. Концентрация CO2, % атм.
Венера ~ 93 ~ 96,5 ~ 89,8
Земля 0,038 0,038
Марс ~ 0,007 95,72 ~ 0,0067

Вместе с тем следует отметить, что величина парникового эффекта зависит от количества парниковых газов в атмосферах и, соответственно, зависит от химической эволюции и изменений состава планетарных атмосфер.

 

 

Парниковыйэффект и климат Земли

Климатические индикаторы за последние 0,5 млн лет: изменение уровня океана (синий), концентрация18O в морской воде, концентрация CO2 в антарктическом льду. Деление временной шкалы — 20 000 лет. Пики уровня моря, концентрации CO2 и минимумы 18O совпадают с межледниковыми температурными максимумами.

По степени влияния на климат парникового эффекта Земля занимает промежуточное положение между Венерой и Марсом: у Венеры повышение температуры приповерхностной атмосферы в ~13 раз выше, чем у Земли, в случае Марса в ~5 раз ниже, эти различия являются следствием различных плотностей и составов атмосфер этих планет.

При неизменности солнечной постоянной и, соответственно, потока солнечной радиации, среднегодовые приповерхностные температуры и климат, определяются тепловым балансом Земли. Для теплового баланса выполняются условия равенства величин поглощения коротковолновой радиации и излучения длинноволновой радиации в системе Земля-атмосфера. В свою очередь, доля поглощенной коротковолновой солнечной радиации определяется общим (поверхность и атмосфера) альбедо Земли, на величину потока длинноволновой радиации, уходящей в космос, существенное влияние оказывает парниковый эффект, в свою очередь, зависящий от состава и температуры земной атмосферы.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан и озон

Основные парниковые газы атмосферы Земли
Газ Формула Вклад (%)
Водяной пар H2O 36 – 72 %
Диоксид углерода CO2 9 – 26 %
Метан CH4 4 – 9 %
Озон O3 3 – 7 %

Главный вклад в парниковый эффект земной атмосферы вносит водяной пар или влажность воздуха тропосферы, влияние других газов гораздо менее существенно по причине их малой концентрации.

Вместе с тем, концентрация водяного пара в тропосфере существенно зависит от приповерхностной температуры: увеличение суммарной концентрации «парниковых» газов в атмосфере должно привести к усилению влажности и парникового эффекта, который в свою очередь приведет к увеличению приповерхностной температуры.

При понижении приповерхностной температуры концентрация водяных паров падает, что ведет к уменьшению парникового эффекта, и, одновременно с этим при снижении температуры в приполярных районах формируется снежно-ледяной покров, ведущий к повышению альбедо и, совместно, с уменьшением парникового эффектом, вызывающим понижение средней приповерхностной температуры.

Таким образом, климат на Земле может переходить в стадии потепления и похолодания в зависимости от изменения альбедо системы Земля - атмосфера и парникового эффекта.

Климатические циклы коррелируют с концентрацией углекислого газа в атмосфере: в течение среднего и позднего плейстоцена, предшествующих современному времени, концентрация атмосферного углекислого газа снижалась во время длительных ледниковых периодов и резко повышалась во время кратких межледниковий

В течение последних десятилетий наблюдается рост концентрации углекислого газа в атмосфере, считается, что этот рост в значительной степени имеет антропогенный характер.

В конце восьмидесятых — начале девяностых годов XX века несколько лет подряд среднегодовая глобальная температура была выше обычной. Это вызвало опасения, что вызванное человеческой деятельностью глобальное потепление уже началось. Среди ученых существует консенсус, что за последние сто лет среднегодовая глобальная температура поднялась на 0,3 — 0,6 градусов Цельсия. Существует научный консенсус, что жизнедеятельность человека является основным фактором, который влияет на текущее повышение температуры на Земле.

 

Землеведение, билет № 28

Гидросфе́ра (от др.-греч. — вода и — шар) — это водная оболочка Земли.

Она образует прерывистую водную оболочку. Средняя глубина океана составляет 3800 м, максимальная (Марианская впадина Тихого океана) — 11 022 метра. Около 97 % массы гидросферы составляют соленые океанические воды, 2,2 % — воды ледников, остальная часть приходится на подземные, озерные и речные пресные воды. Общий объём воды на планете около 1 532 000 000 кубических километров. Масса гидросферы примерно 1,46*1021 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей планеты. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн тонн углекислого газа, а растворенного кислорода — 8 трлн тонн. Область биосферы в гидросфере представлена во всей ее толще, однако наибольшая плотность живого вещества приходится на поверхностные прогреваемые и освещаемые лучами солнца слои, а также прибрежные зоны.

В общем виде принято деление гидросферы на Мировой океан, континентальные воды и подземные воды. Большая часть воды сосредоточена в океане, значительно меньше — в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96 % объёма гидросферы составляют моря и океаны, около 2 % — подземные воды, около 2 % — льды и снега, около 0,02 % — поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу.

Поверхностные воды, занимая сравнительно малую долю в общей массе гидросферы, тем не менее играют важнейшую роль в жизни наземной биосферы, являясь основным источником водоснабжения, орошения и обводнения. Сверх того эта часть гидросферы находится в постоянном взаимодействии с атмосферой и земной корой.

Взаимодействие этих вод и взаимные переходы из одних видов вод в другие составляют сложный круговорот воды на земном шаре. В гидросфере впервые зародилась жизнь на Земле. Лишь в начале палеозойской эры началось постепенное переселение животных и растительных организмов на сушу. Океаническую кору слагают осадочный и базальтовый слои.

Молодая Земля в катархее была лишена как гидросферы, так и плотной атмосферы, поэтому естественно предположить, что эти внешние подвижные геосферы возникли благодаря ее дегазации, которая могла начаться лишь после возникновения в недрах процессов дифференциации земного вещества и появления первых признаков эндогенной тектономагматической активности на поверхности около 4000 Ма. Дегазация мантии зависела не только от тектонической активности, определяемой интенсивностью конвективных движений в мантии, но и от ее химического состава.

В протерозое и фанерозое после окончания процесса формирования земного ядра понятия “конвектирующая мантия” и просто “мантия Земли” совпадают, но в архее это было не так. Под конвектирующей мантией в архее понимают только участки земной оболочки, прошедшие дифференциацию и охваченные конвективными течениями. В раннем архее конвектирующая мантия была тонкой, но постепенно увеличивалась по массе и скорее всего существовала в виде кольцевой геосферы под экваториальным поясом Земли. Только к концу архея она превратилась в полностью сферическую оболочку.

После опубликования работы В.Руби (Rubey, 1951) о геологической истории морской воды, стало общепризнанным представление о том, что происхождение гидросферы и накопление воды в океанах полностью определялось дегазацией мантии и, таким образом, зависело от эндогенных режимов развития Земли. В большинстве работ предполагалась ранняя дегазация Земли, начавшаяся сразу же после ее возникновения, закономерности накопления воды в океанах обычно носили умозрительный характер и полностью исключали количественный подход.

С появлением теории тектоники литосферных плит и особенно после разработки основ концепции глобальной эволюции Земли возникла реальная возможность количественного описания процессов формирования океанов (Сорохтин, 1974, 1979). В этих моделях учитывалось, что скорость дегазации Земли прямо пропорциональна скорости конвективного массообмена в мантии, а главный вклад в мантийную конвекцию вносит наиболее мощный энергетический процесс – гравитационная химико-плотностная дифференциация на плотное окисно-железное ядро и остаточную силикатную мантию. Позднее Монин, Сорохтин, 1984; Сорохтин, Ушаков, 1991 опубликовали более совершенные модели формирования гидросферы, основанные на бародиффузионном и зонном механизмах дифференциации земного вещества, где дегазация Земли могла начаться позже времени ее образования приблизительно на 600 Му только после предварительного прогрева первоначально холодных земных недр до температуры начала плавления силикатов и возникновения у молодой Земли первой астеносферы.

У молодой Земли отсутствовала гидросфера, а атмосферы была разреженной и состояла из азота и благородных газов. Все летучие элементы и соединения, входящие сейчас в состав этих геосфер, находились тогда еще в недрах в связанном состоянии.

Дегазация началась только после расплавления земного вещества в ее верхних слоях, возникновения первых конвективных движений в верхней мантии и разрушения первозданной литосферной оболочки, т.е. после начала тектономагматической активности Земли около 4 000 Ма.

Первичная дегазация мантии, по-видимому, связана со снижением растворимости летучих компонентов в силикатных расплавах при относительно малых давлениях. В результате излившиеся на поверхность Земли мантийные расплавы, в основном базальты, а в архее и коматитовые магмы, вскипали, отдавая излишки летучих элементов и соединений в атмосферу. Кроме того, часть летучих могла освобождаться и при выветривании изверженных пород после их разрушения в поверхностных условиях, однако главным механизмом дегазации воды все-таки является снижение ее растворимости при охлаждении и кристаллизации водосодержащих базальтовых расплавов при низких давлениях. При кристаллизации базальтов происходит выделение растворенной в базальтовых расплавах воды.

Отсюда следует, что скорость дегазации Земли пропорциональна массе изливающихся на земную поверхность в единицу времени мантийных пород, содержанию в них летучих компонентов и их подвижности. В первом приближении скорость излияния мантийных пород пропорциональна тектонической активности Земли, определяемой ее суммарными теплопотерями или производной по времени от тектонического параметра Земли. Скорость дегазации мантии оказывается пропорциональной содержанию в мантии данного компонента, его показателю подвижности и скорости конвективного массообмена в мантии.

В архее все силикатное вещество конвектирующей мантии вместе с содержащимися в нем летучими компонентами неизбежно проходило через слой расплавленного железа. При этом окислы, обладавшие меньшей теплотой образования, чем оксид двухвалентного железа (63,64 ккал/моль), должны были диссоциировать, отдавая свой кислород на окисление железа до двухвалентной закиси. Теплота образования водяного пара (флюида) равна 57,8 ккал/моль, а углекислого газа – 94,05 ккал/моль. Следовательно, пары воды, проходя через слой расплавленного железа в архейских зонах дифференциации земного вещества, должны были диссоциировать (с поглощением кислорода железом), тогда как углекислый газ мог беспрепятственно пересекать этот слой зонной дифференциации. В архее показатель подвижности воды был существенно меньшим, чем в послеархейское время, тогда как для углекислого газа показатель подвижности мог оставаться постоянным для всего времени его дегазации из мантии. Вместе с водой на расплавах железа в архее диссоциировали и многие другие окислы и сульфиды с малой величиной теплоты образования, восстанавливаясь при этом до свободных элементов.

Для количественного решения задачи необходимо определить граничные условия. Первым из краевых условий может быть суммарная масса воды, содержащаяся в современном океане, континентальной и океанической коре, вместе взятых. Используя наиболее вероятные значения массы воды в океане, а также данные по содержанию воды в земной коре из работ А.Б. Ронова и А.А. Ярошевского (1967), принимается следующие значения масс воды в гидросфере: в океане 1,372•1024 г, в континентальной коре вместе с континентальными водами и ледниками 0,446•1024 г. Для океанической коры принимается трехслойное строение, включая осадочный слой со средней мощностью 0,5 км и плотностью 2,2 г/см3; слой, объединяющий базальты, долеритовые дайки и габбро общей мощностью 4 км и плотностью 2,9 г/см3; серпентинитовый слой мощностью 2 км и плотностью 3 г/см3. Считается, что в осадках содержится до 20% воды, в базальтах и габбро – около 2,5 и в серпентинитах – до 11% связанной воды. Тогда общее содержание воды в современной океанической коре приблизительно равно 0,358•1024 г. Всего же во внешних геосферах Земли (в гидросфере) сейчас содержится 2,176•1024 г воды. Это количество воды было дегазировано из недр Земли за все время ее геологической жизни за последние 4 млрд. лет истории планеты.

Это утверждение не совсем справедливо, поскольку часть попавшей на земную поверхность воды диссоциировала при гидратации пород океанической коры, часть диссоциировала в верхних слоях атмосферы под влиянием солнечного излучения, а в протерозое и фанерозое значительная часть воды по зонам субдукции постоянно возвращалась в мантию. Однако если принимать во внимание не абсолютную массу, а только ее эффективное значение, равное разности масс дегазированной и субдуцированной воды, то все расчеты остаются в силе, лишь эффективное значение показателей подвижности окажется несколько меньшим их реальных значений.

Таким образом, принимаем, что в настоящее время во внешних геосферах Земли (в океанах, континентальных водах и запасах льда, в океанической и континентальной коре) находится около 2,176•1024 г воды.

Для определения второго краевого условия – суммарной массы воды на Земле необходимо оценить ее массу в современной мантии. Проблема определения концентрации воды в мантийном веществе сама по себе является фундаментальной для глобальной петрологии и, к сожалению, еще не решена из-за того, что практически все мантийные породы, попадающие на поверхность Земли, тут же (еще в процессе подъема и вывода на поверхность) интенсивно контаминируются поверхностными водами. Даже самые глубинные ксенолиты, например гранатовые перидотиты или эклогиты кимберлитовых трубок взрыва, на поверку оказываются лишь осколками древней океанической коры, затянутой на большие глубины под континенты по бывшим зонам субдукции (Сорохтин, 1985; Сорохтин, Митрофанов, Сорохтин, 1996). Тем не менее свежие базальты океанических островов, несмотря на возможность захвата ими морских вод, фильтрующихся через тела стратовулканов, содержат очень мало воды – не более 0,3% ОН (Йодер, Тилли, 1965). По этим и другим соображениям теоретического характера, большинство современных петрологов, изучающих горные породы мантийного происхождения, склонны считать, что воды в мантии исключительно мало. Так, А. Рингвуд (1981) принимает, что в мантии содержится около 0,1% воды, В.А. Пугин и Н.И. Хитаров (1978) считают, что ее меньше 0,025–0,1%.

Структура: подводная окраина материков (шельф, материковый склон и материковое подножие), переходные зоны от океана к материку, в частности системы островных дуг со свойственным им интенсивным вулканизмом и сейсмичностью; ложе океана и срединно-океанические хребты. Дно океана образует земная кора океанического типа с малой мощностью (8-10 км) и отсутствием гранитно-метаморфического слоя. Ложе океана сложено базальтами; на них залегает чехол глубоководных осадков, мощность которых уменьшается, а подошва омолаживается по направлению к срединно-океаническим хребтам.

Вертикальная структура: океан: 100-200м – зона мах продуктивности, базис действия волн. Озеро: зона ФС, эпилюмнион (гидробиологически активен), термоклин, гиполюмнион (практ.безжизненный).

 

 

Землеведение, билет № 29

Соленость вод Мирового океана

Главным признаком, отличающим воды Мирового океана от вод суши, является их высокая соленость. Количество граммов веществ, растворенных в 1 литре воды, называют соленостью.

Морская вода — это раствор 44 химических элементов, но первостепенную роль в ней играют соли. Поваренная соль придает воде соленый вкус, а магниевая — горький. Соленость выражается в промилле (‰). Это тысячная доля числа. В литре океанической воды растворено в среднем 35 граммов различных веществ, значит, соленость будет 35‰.

Количество солей, растворенных в Мировом океане, будет примерно 49,2 1015; тонн. Для того чтобы наглядно представить себе, насколько велика эта масса, можно привести следующее сравнение. Если всю морскую соль в сухом виде распределить по поверхности всей суши, то та окажется покрытой слоем толщиной в 150 м.

Соленость вод океана не везде одинакова. На величину солености влияют следующие процессы:

— испарение воды. При этом процессе соли с водой не испаряются;

— льдообразование;

— выпадение атмосферных осадков, понижающих соленость;

— сток речных вод. Соленость вод океана у материков значительно меньше, чем в центре океана, так как воды рек опресняют ее;

— таяние льдов.

Такие процессы, как испарение и льдообразование, способствуют повышению солености, а выпадение осадков, сток речных вод, таяние льдов понижают ее. Главную роль в изменении солености играют испарение и выпадение атмосферных осадков. Поэтому соленость поверхностных слоев океана, так же как и температура, зависит от климатических условий, связанных с широтой.

Соленость Красного моря — 42‰. Это объясняется тем, что в это море не впадает ни одной реки, атмосферных осадков здесь выпадает очень мало (тропики), испарение воды от сильного нагрева солнцем очень большое. Вода испаряется из моря, а соль остается. Соленость Балтийского моря не выше 11‰. Это объясняется тем, что это море находится в климатическом поясе, где меньше испарение, но выпадает больше осадков. Однако общая картина может нарушаться течениями. Это особенно хорошо заметно на примере Гольфстрима — одного из самых мощных течений в океане, ветви которого, проникая далеко в Северный Ледовитый океан (соленость 10-11‰), несут воды с соленостью до 35‰. Обратное явление наблюдается у берегов Северной Америки, где под воздействием холодного арктического течения, например Лабрадорского, понижается соленость воды у берегов.

Соленость глубинной части океана в целом практически постоянна. Здесь отдельные слои воды с различной соленостью могут чередоваться по глубине в зависимости от их плотности.

Воды, соленость которых не превышает 1‰, называются пресными.

Плотность

Плотность воды определяется массой единичного объема в килограммах на метр кубический (кг/м3). В водоеме П.в. зависит от таких вещей как: минерализация, температура, количество растворенных солей в воде, ну и, конечно же, от давления высших слоев воды.

Плотность воды химически чистой (обессоленной) зависит от температуры. Их зависимость вычисляется по формуле, которая напоминает параболу с определенной вершиной при t 3,98°С. При такой температуре плотность воды как химического вещества принято считать равной 1000 кг/м3, или же 1г/см3. Если происходит снижение t до 0°С, плотность воды снижается на 0.132 кг/м3, а если же происходит повышение t, то плотность понижается до 995.67 кг/м3 (это при 30°С). Условной П.в. называется разность между плотностью при некоторой температуре (t) и самой большой плотностью (sigma t) approx rho T – 1000. По-другому ее еще называют аномалией П.в. При повышении давления и минерализации П.в. тоже увеличивается. Незначительные изменения плотности воды от всех этих трех факторов играют важнейшую роль при динамике вод в водоемах, в формировании качества воды и их экосистем.

Всем известно, что при повышении температуры вещества увеличивают свой объем и понижают плотность. Вода обладает точно таким же свойством, но в интервале от 0 до 4°С, где с возрастанием температуры объем не повышается, а, наоборот, сокращается, данное свойство не выполняется. Принято считать максимальную плотность воды при температуре 4°С. Отсюда можно сделать вывод, что для воды зависимость объема и температуры двузначна. К примеру, при 0.2 и 8°С масса воды занимает одинаковое количество объема, точно так же как и при 3 и 5°С. Но, не смотря на это, воду принято считать эталоном плотности – при температуре равной 4°С, когда ее масса в 1 грамм имеет объем в 1 кубический сантиметр.

А как изменится объем воды при понижении температуры? Выяснилось, что при t ниже 0°С он будет продолжать увеличиваться, при условии переохлаждения. Но переохлаждение всегда требует сложных условий: неподвижность воды, отсутствия мест кристаллизации льда.

Если вода лишена растворенных в ней газов, то ее можно переохладить до минус 70°С и при этом она не превратится в лед. Но если ее встряхнуть или добавить небольшое количества льда, то она мгновенно покроется льдом и температура ее подскочит до 0°С (на 70°С). Можно так же довести воду до температуры 150°С без закипания, однако если в нее ввести пузырек воздуха, то вода моментально вскипит и температура ее понизится до 100°С.

Вода, при замерзании, внезапно увеличивается в объеме на 11%, так же внезапно и уменьшается при таянии. Это увеличение объема играет огромную роль, как в природе, так и в жизни людей. При замерзании воды и ее дальнейшем увеличении объема, происходит расширение, в результате чего возникает сильное давление, равное 2500 кгс/см2. Именно поэтому замерзающая вода обладает разрушительной силой в замкнутых пустотах, трещинах гор. Именно это объясняет то, как замерзающая вода разрушает многолетние глыба, превращая их в мелкие осколки или же, как происходят взрывы крупных наледей. Точно так же, при замерзании воды в трубопроводе, происходят расширения труб, а в дальнейшем и их взрывы. Стоит так же сказать, что все эти процессы происходят при абсолютном давлении равном 1 атм.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.