Сделай Сам Свою Работу на 5

Условие главных минимумов.





Метод зон Френеля

Из геометрических соображениях следует, что при не очень больших номерах зон их площади примерно одинаковы. Значит каждой точке первой зоны найдется соответствующая ей точка во второй, колебания которых погасят друг друга. Амплитуда результирующего колебания, приходящего в точку P от зоны с номером m, уменьшается с ростом m, т.е.

3. Дифракция Фраунгофера на одиночной щели. Условие наблюдения минимумов.

Дифракция Фраунгофера (или дифракция плоских световых волн, или дифракция в параллельных лучах) наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию.

Условия наблюдения минимумов

Если число зон Френеля четное:

или

то в т. Р наблюдается дифракционный минимум.

 

4. Дифракционная решетка. Период решетки. Характер дифракционной картины. Условия наблюдения главных максимумов и минимумов.

Дифракционная решетка представляет собой совокупность большого числа N одинаковых по ширине и параллельных друг другу щелей, разделенных непрозрачными промежутками, также одинаковыми по ширине



b -ширина щели;

а - ширина непрозрачного участка;

d = a + b -период или постоянная решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция. Т.к. щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления φ одинаковы в пределах всей дифракционной решетки.

(1)

 

В направлениях, в которых наблюдается минимум для одной щели, будут минимумы и в случае N щелей, т.е. условие главных минимумов дифракционной решетки будет аналогично условию минимумов для щели:

 

(2)

Условие главных минимумов.

Условие максимумов; те случаи φ, которые удовлетворяют максимумам для одной щели, могут быть либо максимумами, либо минимумами, т.к. всё зависит от разности хода между лучами.

(3)

Эти максимумы будут расположены симметрично относительно центрального (нулевого k = 0) максимума.



Для тех углов φ, для которых одновременно выполняется (2) и (3) максимума не будет, а будет минимум (например, при d =2b для всех четных k =2р, р = 1, 2, 3...). Между главными максимумами имеются дополнительные очень слабые максимумы, интенсивность которых во много раз меньше интенсивности главных максимумов (1/22 интенсивности ближайшего главного максимума). Дополнительных максимумов будет N - 2, где N - число штрихов.

Условие дополнительных максимумов:

Между главными максимума будут располагаться (N-1) дополнительных минимумов.

Условие дополнительных минимумов:

 

Таким образом, дифракционная картина, при дифракции на дифракционной решетке зависит от N и от отношения d/b.

Пусть N =5,d/b =4. Тогда число главных максимумов(sin φ =1) kmax < d/λ . Между ними по N -2 = 3 дополнительных максимума и N – 1 = 4 дополнительных минимума. При k/m = d/b =2,4,8... - главных максимумов не будет, а будут главные минимумы.

Таким образом, дифракционная картина при дифракции на дифракционной решетке будет иметь вид:

 

Если решетку освещать монохроматическим белым светом, то будет картина, показанная на рис. Если освещать белым светом, то все максимумы, кроме центрального (k = 0) разложатся в спектр - совокупность составляющих цветов, причем фиолетовые линии будут ближе к центру, а красные дальше (т.к. λф < λкр , то φф < φкр).

 

5. Дифракционная решетка как спектральный прибор. Угловая дисперсия и разрешающая способность решетки.

 

 

 
 

Дифракционная решетка (ДР) представляет собой пластинку с множеством параллельных узких щелей одинаковой ширины b, находящихся на расстоянии d друг от друга (рис.).



 

Расстояние между центрами соседних щелей d называется периодом дифракционной решетки.

Дифракционная картина, имеющая довольно сложный характер определяется выражением:

(4)

где

(5)

N – общее число щелей (штрихов) решетки, накрываемых падающей световой волной; Iщ(j ) – функция, определяемая выражениями (1)-(2).

(1)

где

(2)

I 0 – интенсивность света, идущего от всей щели в направлении первичного пучка; l – длина волны света.

Функция (1) обращается в нуль при условии F(j) = ± p × m, где m Î N. Подставляя в это условие выражение (2), получим уравнение, позволяющее определить углы, при которых наблюдаются минимумы освещенности (темные полосы):

(3)

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.