Сделай Сам Свою Работу на 5

Принцип защитного заземления





Защитное действие заземления основано на двух принципах:

· Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

· Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

· В системах с глухозаземлённой нейтралью — инициирование срабатывания предохранителя при попадании фазного потенциала на заземлённую поверхность.

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземлённых предметах не превысит безопасных величин. Более того, неисправный участок сети будет отключён в течение очень короткого времени (десятые…сотые доли секунды — время срабатывания УЗО).

В России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ). Заземление в электротехнике подразделяют на естественное и искусственное.



Естественное заземление

Заземлитель (металлический стержень) с присоединённым заземляющим проводником

К естественному заземлению принято относить те конструкции, строение которых предусматривает постоянное нахождение в земле. Однако, поскольку ихсопротивление ничем не регулируется и к значению их сопротивления не предъявляется никаких требований, конструкции естественного заземления нельзя использовать в качестве заземления электроустановки. К естественным заземлителям относят, например, трубы.

Искусственное заземление

Искусственное заземление — это преднамеренное электрическое соединение какой-либо точки электрической сети, электроустановки или оборудования с заземляющим устройством.

Заземляющее устройство (ЗУ) состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы.



Качество заземления определяется значением сопротивления заземления / сопротивления растеканию тока (чем ниже, тем лучше), которое можно снизить, увеличивая площадь заземляющих электродов и уменьшая удельное электрическое сопротивление грунта: увеличивая количество заземляющих электродов и/или их глубину; повышая концентрацию солей в грунте, нагревая его и т. д.

Электрическое сопротивление заземляющего устройства различно для разных условий и определяется/нормируется требованиями ПУЭ и соответствующих стандартов.

3. Применяемая для управления аппаратура, то есть отключение, включение и переключение электроустановками, имеет название коммутационная аппаратура. К такой аппаратуре относятся магнитные пускатели, переключатели, выключатели, рубильники, автоматические выключатели, контакторы.

Использующую коммутационную аппаратуру при токовых перегрузках для отключения электроустановок, а также применяемую и при коротких замыканиях, называют защитной аппаратурой. К такой аппаратуре относятся реле защитного типа и, конечно же, различного вида предохранители. Некоторые из аппаратов являются одновременно и защитными, и коммутационными аппаратами, например, магнитные пускатели и автоматические выключатели.

Коммутационные аппараты различают автоматические и не автоматические. Аппаратура ручного управления относится к не автоматическим коммутационным аппаратам, пакетные выключатели, рычажные, реостаты, пульты, переключатели, кнопочные, поворотные, рубильники. Пример этому пусковой реостат устанавливается для кратковременного прохождения по ним тока, а регулировочный реостат устанавливается для длительного прохождения по ним тока, их применяют для пуска и регулирования частоты вращения электродвигателей.



Контролеры допускают запускать электродвигатели в более широких пределах, по сравнению с реостатами и регулировать частоту их вращения. Контакторы реле и магнитные пускатели относятся к автоматическим коммутационным аппаратам. Действие и устройство различных электрических аппаратов полностью зависит от работы их назначения. Всё же можно определить ряд общих частей для разных электрических аппаратов. К ним относятся электрические контакты, катушки, магнитопроводы, пружины, кое-какие детали из электроизоляционных материалов.

При размыкании контактов возникает электрическая дуга, для её гашения имеются устройства во многих электрических аппаратах. Такие устройства нередко выполняются в виде шайб или камеры, сделанных из фибры. Под действием электрической дуги, фибра обладает свойством выделять газы, повергающие к ее быстрому гашению.

Следующие общие требования предъявляют к аппаратуре управления электроустановками:

· безотказность обслуживания;

· надежность действия;

· простота изготовления, эксплуатации и монтажа;

· достаточный срок службы;

· малое потребление электрической энергии самими аппаратами;

· небольшие габариты;

· низкая стоимость.

4. Автоматические регуляторы

Автоматически действующее устройство, предназначенное для регулирования какого-либо параметра объекта, называется автоматическим регулятором.

Автоматические регуляторы могут быть прямого (непосредственного) и непрямого (косвенного) действия (рис. 7).

Автоматическим регулятором прямого (непосредственного) действия называют простейший регулятор, чувствительный (первичный) элемент которого может непосредственно воздействовать на регулирующий (исполнительный) орган без усилительно-преобразующего устройства и дополнительного источника энергии. Такой регулятор работает исключительно за счет энергии самого регулируемого объекта.

Примером автоматического регулятора прямого действия может служить система стабилизации уровня воды в баке (рис. 8,6). Регулируемым объектом является бак 1, регулируемым параметром - высота уровня воды Н. Значение регулируемого параметра зависит от соотношения между величинами поступления воды Qi и ее расхода Q2. Стабилизация этого параметра достигается регулирующим органом - заслонкой 2, управляемой чувствительным элементом - поплавком 5 через рычаг 3 и задатчик 4.

Понижение уровня воды вызывает опускание поплавка, а следовательно, раскрытие заслонки 2, т. е. увеличение поступления воды. При повышении уровня происходит обратный процесс.

Автоматическим регулятором непрямого (косвенного) действия называют такой, в состав которого входит усилительно-преобразующее устройство, питаемое извне от дополнительного источника энергии.

Схема регулятора непрямого действия, предназначенного для регулирования уровня воды в баке 1, приведена на рис. 9,6. Заслонка 2, регулирующая количество поступающей воды Qb управляется чувствительным элементом - поплавком б не за счет энергии воды, а за счет дополнительной электрической энергии, привлекаемой для работы преобразующего органа - потенциометра 4 и усилительного - электродвигателя 3 (привода регулирующего органа).

У рассматриваемого регулятора при среднем положении движка потенциометра, присоединенного к рычагу 5, высота уровня воды равна заданному значению Я, и электродвигатель 3 не работает. При понижении уровня воды поплавок, опускаясь, передвигает ползунок потенциометра в сторону знака плюс, а электродвигатель приоткрывает заслонку 2. При повышении уровня движок перемещается в сторону знака минус, что вызывает вращение электродвигателя в противоположном направлении, а следовательно, прикрытие заслонки.

В зависимости от способа перемещения регулирующего органа автоматические регуляторы могут быть непрерывного и прерывистого действия.

У автоматических регуляторов непрерывного регулирования регулирующий орган занимает, кроме крайних, любое промежуточное положение в зависимости от протекания процесса. Примерами таких регуляторов могут служить приведенные на рис. 8 и 9. У автоматических регуляторов прерывистого регулирования регулирующий орган занимает только два крайних положения (у двухпозиционных) или два крайних и несколько промежуточных (у многопозиционных).

.

Характер протекания процесса непрерывного регулирования- определяется законом регулирования, т. е. зависимостью выходной величины автоматического регулятора от входной.

Закон регулирования определяется управляющим устройством регулятора. По этому признаку автоматические регуля-- торы подразделяются на статические и астатические. Их особенности можно рассмотреть на примере автоматических регуляторов уровня воды (см. рис. 8 и 9).

Повысить устойчивость и качество регулирования систем автоматического регулирования можно двумя способами: путем изменения параметров регулируемого объекта или регулятора и путем изменения структурной схемы регулятора. Практически обычно изменяют структурную схему регулятора, для чего вводят дополнительные звенья. Устройства автоматических регуляторов, состоящие из таких звеньев, называются корректирующими. Часто они представляют собой разного рода дополнительные (внутренние) обратные связи.

Из автоматических регуляторов с корректирующими устройствами наиболее распространены изодромный и с воздействием по производной (с предварением).

Автоматические регуляторы непрямого действия можно выполнять универсальными, пригодными для регулирования разных параметров процессов. Например, к измерительной системе таких регуляторов может быть присоединен любой воспринимающий (первичный) элемент, вводящий необходимое воздействие и интенсивность. К выходу исполнительного органа регулятора могут быть присоединены разные регулирующие органы в соответствии с. видом и интенсивностью выходного воздействия [19, 35, 45, 59, 75].

 

5. Нормативный расход тепла на технологические нужды ВПУ [Q , ГДж (Гкал)] за рассчитываемый период (1 месяц, 1 год) определяется по формуле

(12)

где С - удельная теплоемкость воды, принятая равной 4,19 кДж/(кг×°С) [1 ккал/(кг×°С)];

d - плотность воды, принятая равной 1 кг/дм3;

- нормативная (предельная) температура подогретой воды на входе в ВПУ, °С (табл. 2);

- фактическая температура исходной воды, °С.

Таблица 2

Тип предочистки Предельная температура подогрева воды, °С
Водоподготовительная установка без предочистки
Коагуляция в осветлителе 25-30
Известкование с коагуляцией в осветлителе
Магнезиальное обескремнивание в осветлителе

3.2. Фактический расход тепла на технологические нужды ВПУ [ , ГДж (Гкал)] за отчетный период определяется по формуле

(13)

где - фактический расход исходной воды, м3;

- фактическая температура подогретой воды на входе в ВПУ, °С.

6.Метод определения влаги в сливочном масле высушиванием навески при температуре (102+ 2)°С

Метод применяется при возникновении разногласия в оценке качества.

Подготовка к анализу

Песок просеивают через сито с диаметром отверстий 1,5 мм, затем через сито с диаметром 1,0 мм. Берут ту часть, которая осталась на втором сите, промывают питьевой водой, после чего кипятят 30 мин с 25 %-ным раствором соляной кислоты, промывают питьевой, затем дистиллированной водой (или водой аналогичного качества) до отрицательной реакции на хлориды, после чего просушивают на воздухе и прокаливают в муфельной печи или на электрической плитке (500 + 25) °С.

Пробу нагревают до температуры не выше 30 °С, обеспечивающей гомогенное состояние при перемешивании механической мешалкой или вручную. Затем охлаждают до комнатной температуры (около 20 °С) при постоянном перемешивании.

Проведение анализа

12 – 30 г песка помещают в чашку. Чашку с песком и стеклянной палочкой сушат в сушильном шкафу при температуре (102 + 2) °С в течении 1 ч, затем охлаждают в эксикаторе до комнатной температуры (около 20 °С) м взвешивают с погрешностью не более 0,001 г.

В чашку взвешивают от 5 до 10 г масла с погрешностью не более 0,001 г, тщательно перемешивают с песком. Ставят чашку в сушильный шкаф и сушат при температуре (102 + 2) °С не менее 2 ч.

Затем содержимое чашки охлаждают в эксикаторе до комнатной температуры (около 20 °С) и взвешивают с погрешностью не более 0,001 г.

Последующие взвешивания проводят после высушивания в течение 1 ч до тех пор, пока разность между двумя последующими взвешиваниями будет не более 0,001 г.

Если после повторного высушивания масса увеличится, для расчета берут результаты предыдущего взвешивания.

Обработка результатов

Массовую долю влаги в масле W, %, вычисляют по формуле

(m1 – m2) * 100

W = ,

m1 – m0

 

где m0– масса чашки с песком и стеклянной палочкой, г;

m1 - масса чашки с песком и стеклянной палочкой и маслом до высушивания, г;

m2 - масса чашки с песком и стеклянной палочкой и маслом после высушивания, г.

За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,1 %.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.