Сделай Сам Свою Работу на 5

Тема 8. Производственная функция.





  1. Производственная функция.
  2. Изокванта и предельная норма технологического замещения.
  3. Производственная функция Кобба-Дугласа.
  4. Равновесие производителя. Изокоста. Линейная модель производства.

1. Производственная функция.

Производственная функция является важнейшим понятием в теории производителя и представляет собой зависимость объема производства (выпуска) продукта от затрат (расходов) ресурсов. При моделировании поведения производителя с помощью производственной функции делают ряд упрощающих предположений.

1. Производится один продукт, объем его производства обозначают Р (от англ. product – продукт).

2. В случае одного ресурса считают, что этим ресурсом является труд. Затраты труда обозначают L (от англ. labour — труд).

3. В случае нескольких ресурсов считают, что последовательность их использования в производстве не влияет на величину выпуска продукта. В случае двух ресурсов считают, что это труд и капитал. Затраты капитала обозначают К.

4. Если затраты ресурса выражаются целым числом, то его называют неделимым (рабочий, станок). Если труд и капитал неделимым, то производственную функцию называют дискретной и обозначают Pij, где I — затраты труда, j — затраты капитала.



5. Если затраты ресурса выражаются любым дробным числом, то его называют делимым (рабочее время, время работы оборудования). Если труд и капитал делимы, то производственную функцию называют непрерывной и обозначают P (L; K).

6. Непрерывная производственная функция дифференцируема по всем своим аргументам, т.е. она имеет частные производные. Это условие позволяет использовать аппарат дифференциального исчисления при исследовании поведения производителя.

7. Используемые ресурсы в той или иной степени способны замещать друг друга в производстве. Это значит, что сокращение затрат одного ресурса можно компенсировать увеличением затрат другого ресурса таким образом, что выпуск продукта останется неизменным.

8. Цель производителя состоит в максимизации выпуска при данных затратах.

Предельный продукт (предельная производительность) труда есть прирост выпуска продукта при увеличении затрат труда на единицу — MPL. Аналогично определяется предельный продукт капитала — MPК.



С увеличением расхода ресурса предельный продукт сначала возрастает, а затем убывает. Снижение предельного продукта переменного ресурса получило название закона убывающей производительности.

Теоретически предельный продукт может быть отрицательным. Например, если в небольшом ресторане уже работают 100 официантов, то еще один будет только мешать им и число обслуживаемых за день клиентов уменьшится.

Если труд неделим, то предельный продукт i-й израсходованной единицы труда равен разности объемов выпуска после и до ее использования:

Mpi = Pi – Pi – 1.

Если продукт неделим, то предельный продукт труда равен производной производственной функции:

MPL = ∆P / ∆L = P′(L).

Если средний продукт труда максимален, то он равен предельному продукту труда. Это значит, что в ситуации, когда труд используется наиболее эффективно, значения его средней и предельной производительности равны между собой и можно говорить просто о производительности труда.

В случае, когда ресурсы делимы, предельный продукт труда и предельный продукт капитала выражаются соответствующими частными производными производственной функции:

MPL = ∂P / ∂L; MPK = ∂P / ∂K.

Средний продукт труда в этом случае есть отношение выпуска продукта к затратам труда при некотором фиксированном расходе капитала. Аналогично определяется средний продукт капитала. Понятно, что если средний продукт капитала максимален, то он равен предельному продукту капитала.

2. Изокванта и предельная норма технологического замещения.



Изокванта есть изображение на плоскости множества наборов труда и капитала, обеспечивающих одинаковый выпуск продукта. Изокванта есть аналог кривой безразличия в теории потребления, отсюда следуют ее основные свойства:

ñ никакие две изокванты не пересекаются;

ñ чем дальше от начала координат расположена изокванта, тем больший объем выпуска ей соответствует.

Предельная норма технологического замещения трудом капитала есть величина, на которую нужно уменьшить затраты капитала при увеличении затрат труда на единицу, чтобы сохранить выпуск неизменным:

MRTSL, K = - ∆K / ∆L.

Этот показатель характеризует степень взаимозаменяемости труда и капитала в конкретном производстве.

Предельная норма технологического замещения уменьшается с увеличением расхода труда. Она равна отношению предельных продуктов труда и капитала:

MRTSL, K = MPL / MPK.

Она характеризует относительную роль труда и капитала в конкретном производстве. Чем больше этот показатель, тем больше роль труда в производстве.

3. Производственная функция Кобба-Дугласа.

 

Рассмотрим наиболее известную производственную функцию. Производственная функция Кобба — Дугласаимеет вид:

P = DLα Kβ,

где L — затраты труда, К — затраты капитала, D, α и β — положительные константы, которые не превосходят единицу.

Опыт показывает, что производство обычно описывается производственной функцией этого типа.

Основные свойства функции Кобба — Дугласа.

ñ Она является однородной функцией степени α + β. Если α + β равно единице, то имеет место постоянная отдача от масштаба производства. Если α + β меньше единицы, то имеет место убывающая отдача от масштаба производства. Если α + β больше единицы, то имеет место возрастающая отдача.

ñ Предельная норма технологического замещения трудом капитала пропорциональна капиталовооруженности труда:

MRTSL, K = - αK / βL.

ñ В частном случае, когда α + β равно единице, предельные продукты труда зависят от капиталовооруженности труда. Так:

MPL = Dα(K / L)1 – α.

ñ Эластичность производственной функции по труду равна α, эластичность по капиталу равна β:

EL = (∆P / P) / (∆L / L) = α; EK = (∆P / P) / (∆K / K) = β.

Это значит, что при увеличении затрат труда на 1% при неизменных затратах капитала выпуск увеличится на α%, а при увеличении затрат капитала на 1% при неизменных затратах труда он увеличится на β%. Отсюда следует, что коэффициент α характеризует «роль» труда в производстве, а коэффициент β - «роль» капитала в производстве.

 

4. Равновесие производителя. Изокоста. Линейная модель производства.

Равновесный (оптимальный) объем производства — это выпуск продукта, который обеспечивает максимальную прибыль. В случае одного продукта и одного ресурса (труда), когда труд делим, условие равновесия производителя состоит в равенстве стоимости предельного продукта и его цены:

рМР(L) = w.

Т.е. в состоянии равновесия заработная плата рабочих равна стоимости предельного продукта труда.

Равновесие в случае одного продукта и двух ресурсов (труда и капитала). Предположим, что предприятие может приобрести ресурсы на сумму С. Цену труда (ставку заработной платы) обозначим w, а цену капитала (цену одного часа работы оборудования) — r. Предположим также, что все выделенные средства предприятие тратит полностью на покупку ресурсов. Тогда сумма его затрат на труд и капитал равна величине издержек:

wL + rK = C,

где L — затраты труда, К — затраты капитала.

Данное равенство называют бюджетным ограничением производителя. Изокостаесть изображение множеств наборов ресурсов, имеющих равную стоимость С. Ее свойства аналогичны свойствам бюджетной линии потребителя:

ñ точка ее пересечения с осью ОХ отвечает максимально возможному расходу труда. Точка пересечения с осью ординат — максимально возможному расходу капитала;

ñ наклон изокосты к осям координат определяется отношением цен труда и капитала;

ñ при увеличении издержек производителя изокоста сдвигается параллельно самой себе от начала координат, а при уменьшении издержек — к началу координат.

Равновесный (оптимальный) объем ресурсовесть набор на изокосте, который обеспечивает максимальный выпуск продукта.

Условия равновесия производителя:

  1. Отношение цен труда и капитала равно предельной норме технологического замещения:

w/r = MRTS.

  1. Отношение цен труда и капитала равно соответствующему отноешнию предельных продуктов:

w/r = MPL / MPK.

  1. Предельный продукт, отнесенный к цене ресурса, одинаков для обоих ресурсов:

MPL / w = MPK / r.

  1. Равновесие производителя достигается в случае, когда изокоста и некоторая изокванта имеют единственную общую точку, т. е. касаются друг друга.

Случай производства двух продуктов, причем число используемых ресурсов может быть произвольным.

Линейная модель производства. Предположим, что некоторое предприятие выпускает продукты X и Y, расходуя при этом ресурсы M и N. Введем обозначения:

x — выпуск продукта Х;

y — выпуск продукта Y;

m — имеющийся в наличии объем ресурса М (его запас);

n - имеющийся в наличии объем ресурса N (его запас);

а11 — расход ресурса М при производстве единицы продукта Х;

а12 - расход ресурса М при производстве единицы продукта Y;

а21 - расход ресурса N при производстве единицы продукта Х;

а22 - расход ресурса N при производстве единицы продукта Y;

px цена продукта X;

py — цена продукта Y.

В данном случае никакая обычная производственная функция не может описать процесс производства, поэтому роль производственной функции выполняет функция общего дохода (выручки):

TR (x; y) = pxx + pyy.

При заданных запасах ресурсов максимум прибыли достигается одновременно с максимумом выручки, поскольку здесь прибыль равна разности переменной выручки и постоянной величины затрат на ресурсы. Поэтому функция выручки является в данном случае целевой функцией производителя.

Изокванта целевой функции производителя есть множество наборов продуктов одинаковой стоимости. В линейной модели производства изокванта изображается отрезком прямой, наклон которого к осям координат определяется отношением цен продуктов.

В своем стремлении максимизировать прибыль производитель двух продуктов, как и производитель одного продукта, сталкивается с определенными ограничениями.

Первое ограничение. Расход ресурса М припроизводстве всего количества продукта Х равен а11х, а его расход при производстве всего количества продукта Y равен а12y. Поскольку суммарный расход не может превосходить запаса ресурса, первое ограничение запишется следующим образом:

а11х + а12y ≤ m.

Аналогично второе ограничение, отвечающее ресурсу N, запишется так:

а21х + а22y ≤ n.

Планом производства называют пару выпусков продуктов (х; y), которая удовлетворяет обоим ограничениям.

Равновесный (оптимальный) план производства есть такой план, который максимизирует функцию выручки при заданных двух ограничениях. С формальной точки зрения нахождение равновесного плана производства состоит в максимизации линейной функции выручки при линейных ограничениях.

Тема 9. Фирма в условиях чистой (совершенной) конкуренции.

1. Рыночная власть. Совершенная и несовершенная конкуренция.

2. Максимизация объема производства совершенного конкурента в краткосрочном периоде.

3. Максимизация объема производства совершенного конкурента в долговременном периоде.

4. Эффективность фирмы в условиях чистой конкуренции.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.