Сделай Сам Свою Работу на 5

Скорость оседания эритроцитов.





Физиология крови

Кровь, а также органы, принимающие участие в образовании и разрушении ее клеток, вместе с механизмами регуляции объединяют в единую систему крови.

Функции системы крови.

Транспортная - состоит в том, что кровь переносит газы, питательные вещества, продукты обмена веществ, гормоны, медиаторы, электролиты, ферменты и др.

Дыхательная функция заключается в том, что гемоглобин эритроцитов переносит кислород от легких к тканям организма, а углекислый газ от клеток к легким.

Питательная функция — перенос основных питательных веществ от органов пищеварения к тканям организма.

Экскреторная функция (выделительная) осуществляется за счет транспорта конечных продуктов обмена веществ (мочевины, мочевой кислоты и др.) и лишних количеств солей и воды от тканей к местам их выделения (почки, потовые железы, легкие, кишечник).

Водный баланс тканей зависит от концентрации солей и количества белка в крови и тканях, а также от проницаемости сосудистой стенки.

Участие в процессе терморегуляции осуществляется за счет физиологических механизмов, способствующих быстрому перераспределению крови в сосудистом русле.



Защитная функция - кровь является важнейшим фактором иммунитета. Это обусловлено наличием в крови антител, ферментов, специальных белков крови, обладающих бактерицидными свойствами, относящихся к естественным факторам иммунитета.

Регуляторная функция заключается в том, что поступающие в кровь продукты деятельности желез внутренней секреции, пищеварительные гормоны, соли, ионы водорода и др. через центральную нервную систему и отдельные органы (либо непосредственно, либо рефлекторно) изменяют их деятельность.

Количество крови и ее состав.

Объем крови составляет 6-8% от массы тела. У детей количество крови относительно больше: у новорожденных оно составляет в среднем 15% от массы тела, а у детей в возрасте 1 года —11%. В физиологических условиях не вся кровь циркулирует в кровеносных сосудах, часть ее находится в так называемых кровяных депо (печень, селезенка, легкие, сосуды кожи). Общее количество крови в организме сохраняется на относительно постоянном уровне.



Периферическая кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов или кровяных клеток (эритроцитов, лейкоцитов, тромбоцитов)

Если дать крови отстояться или провести ее центрифугирование, предварительно смешав с противосвертывающим веществом, то образуются два резко отличающихся друг от друга слоя: верхний — прозрачный, бесцветный или слегка желтоватый — плазма крови; нижний — красного цвета, состоящий из эритроцитов и тромбоцитов. Лейкоциты за счет меньшей относительной плотности располагаются на поверхности нижнего слоя в виде тонкой пленки белого цвета.

Объемные соотношения плазмы и форменных элементов определяют с помощью гематокрита. В периферической крови плазма составляет приблизительно 52—58% объема крови, а форменные элементы42— 48%.

Плазма крови, ее состав.

В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ.

К органическим веществам плазмы крови относятся:

1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Белки составляют 7—8%сухого остатка (67-75 г/л)

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 14-28 г/л. При нарушении функции почек, выделяющих шлаки из организма, содержание остаточного азота в крови резко возрастает;

3) безазотистые органические вещества: глюкоза — 3,3-5,5 ммоль/л (80—120 мг%), нейтральные жиры, липиды;



4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка+, Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3.

Функции белков плазмы:

  1. обусловливают онкотическое давление. В среднем оно равно 26 мм рт.ст.
  2. обладая буферными свойствами, участвуют в поддержании кислотно-основного равновесиявнутренней среды организма
  3. участвуют в свертывании крови
  4. гамма-глобулины участвуют в защитных (иммунных) реакциях организма
  5. повышаютвязкость крови, имеющую важное значение в поддержании АД
  6. белки (главным образом альбумины) осуществляют транспорт гормонов, витаминов, микроэлементов,продуктов обмена веществ
  7. предохраняют эритроциты от агглютинации (склеивание и выпадение в осадок)
  8. глобулин крови – эритропоэтин – участвует в регуляции эритропоэза
  9. белки крови являются резервом аминокислот, обеспечивающих синтез тканевых белков

Осмотическое и онкотическое давление крови.

Осмотическое давление обусловлено электролитами и некоторыми не электролитами с низкой молекулярной массой (глюкоза и др.). Около 60% всего осмотического давления обусловлено солями натрия. Основная функция осмотического давления – поддержание форменных элементов крови в неизмененном виде и удержание жидкой части крови в сосудистом русле.

Онкотическое давление плазмы обусловлено белками. За счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении величины онкотического давления принимают альбумины; вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Постоянство коллоидно-осмотического давления крови у высокоорганизованных животных является общим законом, без которого невозможно их нормальное существование.

Если эритроциты поместить в солевой раствор, имеющий одинаковое осмотическое давление с кровью, то они заметным изменениям не подвергаются. В растворе с высоким осмотическим давлением клетки сморщиваются, так как вода начинает выходить из них в окружающую среду. В растворе с низкимосмотическим давлением эритроциты набухают и разрушаются. Это происходит потому, что вода из раствора с низким осмотическим давлением начинает поступать в эритроциты, оболочка клетки не выдерживает повышенного давления и лопается.

Солевой раствор, имеющий осмотическое давление, одинаковое с кровью, называют изоосмотическим, или изотоническим (0,85—0,9 % раствор NaCl). Раствор с более высоким осмотическим давлением, чем давление крови - гипертонический, а имеющий более низкое давление — гипотонический.

Реакция крови.

Реакция среды определяется концентрацией водородных ионов. Для определения кислотности или щелочности среды пользуются водородным показателем рН. В норме рН крови составляет 7,36—7,42(слабощелочная).

Сдвиг реакции в кислую сторону называется ацидозом. Ацидоз приводит к угнетению функции центральной нервной системы, при выраженном ацидозе может наступить потеря сознания и смерть.

Сдвиг реакции крови в щелочную сторону называется алкалозом. В этом случае происходит перевозбуждение нервной системы, отмечается появление судорог, а в дальнейшем гибель организма.

В организме всегда имеются условия для сдвига реакции в сторону ацидоза или алкалоза. В клетках и тканях постоянно образуются кислые продукты: молочная, фосфорная и серная кислоты. При усиленном потреблении растительной пищи в кровоток постоянно поступают основания. Напротив, при преимущественном потреблении мясной пищи в крови создаются условия для накопления кислых соединений. Однако величина активной реакции крови постоянна.

Поддержание постоянства активной реакции крови обеспечивается буферными системами, к которым относятся:

1) карбонатная буферная система (угольная кислота — Н2СО3, бикарбонат натрия — NаНСО3);

2) фосфатная буферная система [одноосновный (МаН2РО4) и двухосновный (Nа2НРО4) фосфат натрия];

3) буферная система гемоглобина (гемоглобин — калиевая соль гемоглобина);

4) буферная система белков плазмы.

Буферные системы нейтрализуют значительную часть поступающих в кровь кислот и щелочей и препятствуют тем самым сдвигу активной реакции крови. Буферные системы имеются и в тканях, что способствует поддержанию рН тканей на относительно постоянном уровне. Главными буферами тканей являются белки и фосфаты.

Сохранению постоянства рН способствует и деятельность некоторых органов. Так, через легкие удаляется избыток углекислоты. Почки при ацидозе выделяют больше кислого одноосновного фосфата натрия; при алкалозе — больше щелочных солей (двухосновного фосфата натрия и бикарбоната натрия). Потовые железы могут выделять в небольших количествах молочную кислоту.

Скорость оседания эритроцитов.

В крови, предохраненной от свертывания, происходит оседание форменных элементов, в результате чего кровь разделяется на два слоя: верхний – плазма и нижний – осевшие на дно сосуда клетки крови. СОЭ измеряется в миллиметрах в час. У взрослых и здоровых мужчин она равняется 1-10 мм/ч, у здоровых женщин – 2-15 мм/ч.

СОЭ увеличивается при некоторых инфекционных заболеваниях, злокачественных новообразованиях, воспалительных процессах, диабете.

СОЭ исследуют с помощью аппарата Панченкова. Прибор состоит из штатива и стеклянных капилляров, градуированных от 0 до 100 мм (метка 0 находится в верхней части капилляра). Капилляр заполняют разведенной в отношении 1:4 цитратной кровью и помещают в гнездо штатива (в строго вертикальном положении), на 1 час, после чего измеряют в миллиметрах слой плазмы над осевшими клетками крови.

Группы крови.

Классификация групп крови по системе АВ0 основана на наличии или отсутствии на мембране эритроцитов антигенов А и В, а в плазме крови – антител α и β. Агглютинация (склеивание эритроцитов) происходит, если в крови встречаются одноименные агглютиногены и агглютинины (А с α или В с β).

I группа — 0αβ(I) - в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины аиb.

II группа — Aβ(II) - в эритроцитах находится агглютиноген А, в плазме агглютинин b.

III группа — Bα(III) - в эритроцитах обнаруживается агглютиноген В, в плазме—агглютинин а.

IV группа — ABο(IV) - в эритроцитах содержатся агглютиногены А и В, в плазме агглютининов нет.

При несовместимости крови донора и реципиента возникает агглютинация эритроцитов, ведущая к гемотрансфузионному шоку.

Группа крови определяется с помощью цоликлонов.

Кроме агглютиногенов, определяющих четыре группы крови, эритроциты могут содержать в разных комбинациях и многие другие агглютиногены. Среди них особенно большое практическое значение имеет резус-фактор.У 85% людей в крови содержится резус-фактор, такие люди называются резус-положительными (Rh+ ). У 15% людей резус-фактор в эритроцитах отсутствует [резус-отрицательные (Rh—) люди]. Система резус не имеет агглютининов, но при переливании резус-положительной крови пациенту с резус-отрицательной кровью формируются иммунные антитела к резус-антигену. При повторном переливании они становятся причиной развития резус-конфликта. Резус-отрицательным реципиентам можно переливать только резус-отрицательную кровь.

Несовместимость крови по резус-фактору играет также определенную роль в происхождении гемолитических анемий плода и новорожденного (уменьшение количества эритроцитов в крови вследствие гемолиза) и, возможно, гибели плода во время беременности.

Если мать принадлежит к резус-отрицательной группе, а отец — к резус-положительной, то плод может быть резус-положительным. При этом в организме матери могут вырабатываться антирезус-агглютинины, которые, проникая через плаценту в кровь плода, будут вызывать агглютинацию эритроцитов с последующим их гемолизом.

Чтобы избежать иммунологического конфликта при переливании крови, необходимо придерживаться следующих правил:

1. переливать только одногруппную кровь

2. перед переливанием всегда проводить пробу на индивидуальную и резус-совместимость

3. в начале трансфузии проводить биологическую пробу

4. не переливать большие количества крови, при большой кровопотере возмещать объемциркулирующей крови кровезамещающими жидкостями.

Кровезамещающие жидкости (кровезаменители) — растворы, которые применяются вместо крови или плазмы для замещения потерянной организмом жидкости (или крови), проведения дезинтоксикации (обезвреживания). Наиболее простым кровезамещающим раствором является изоосмотический раствор хлорида натрия (0,85—0,9%). К плазмозаменителям относятся: коллоидные синтетические препараты, которые оказывают онкотическое действие (полиглюкин, желатиноль, гексаэтилкрахмалы), препараты, имеющие реологические свойства, т.е. улучшающие микроциркуляцию (реополиглюкин, реамберин), дезинтоксикационные препараты (реосорбилакт, сорбилакт).

Переливание крови осуществляется в зависимости от показаний капельно (со скоростью в среднем 40— 60 капель в минуту) или струйно. Во время переливания крови врач следит за состоянием реципиента и при ухудшении состояния больного (озноб, боль в пояснице, слабость и т. д.) переливание прекращают.

 

Эритроциты.

Эритроциты имеют форму двояковогнутого диска. Диаметр их равен 7—8 мкм. Образуются в красном костном мозге, живут около 4 месяцев и разрушаются в печени и селезенке. В 1л крови мужчин содержится4,0-5,0 х 10 ¹²/л(4,0—5,0 млн. в 1 мм3) эритроцитов, женщин —3,7—4,7 х10 ⁹/л (3,7—4,7 млн. в 1 мм3). Повышение количества эритроцитов в крови - эритроцитоз, понижение — эритропения.

Функции эритроцитов:

1. Дыхательная функция выполняется эритроцитами за счет дыхательного пигмента гемоглобина,который обладает способностью присоединять к себе кислород и углекислый газ.

2. Питательная функция эритроцитов состоит в адсорбировании на их поверхности аминокислот,которые транспортируются к клеткам организма от органов пищеварения.

3. Защитная функция эритроцитов определяется их способностью связывать токсины (вредные,ядовитые для организма вещества) за счет наличия на поверхности эритроцитов специальных веществбелковой природы — антител. Кроме того, эритроциты принимают активное участие в свертываниикрови.

4. Ферментативная функция эритроцитов связана с тем, что они являются носителями разнообразныхферментов.

5. Регуляция рН крови — осуществляется эритроцитами посредством гемоглобина. Гемоглобиновыйбуфер — один из мощнейших буферов, он обеспечивает 70—75% буферных свойств крови.

Гемоглобин.

Гемоглобин — дыхательный пигмент крови — выполняет в организме важную роль переносчика кислородаи принимает участие в транспорте углекислого газа.

У мужчин в крови содержится в среднем 130—160 г/л гемоглобина, у женщин—120—140 г/л.

Гемоглобин состоит из белка глобина и четырех молекул гема. Молекула гема, содержащая атом железа, обладает способностью присоединять или отдавать молекулу кислорода.

Соединения гемоглобина. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин (НbO2). Кислород с гемом гемоглобина образует непрочное соединение. Гемоглобин, отдавший кислород, называется восстановленным, или редуцированным, гемоглобином (НЬ). Гемоглобин, соединенный с молекулой углекислого газа, называется карбогемоглобином (НЬСO2). Это также легко распадающееся соединение.

Соединение гемоглобина с угарным газом называется карбоксигемоглобином (НbСО). Карбоксигемоглобин является прочным соединением, вследствие этого отравление угарным газом очень опасно для жизни.

При некоторых патологических состояниях, например, при отравлении фенацетином, амил- и пропилнитритами и т. д., в крови появляется прочное соединение гемоглобина с кислородом —метгемоглобин. В случаях накопления в крови большого количества метгемоглобина транспорт кислорода тканям становится невозможным и человек погибает.

В скелетных и сердечной мышцах находится мышечный гемоглобин, или миоглобин. Миоглобин человека связывает до 14% общего количества кислорода в организме. Он играет важную роль в снабжении кислородом работающих мышц.

Гемоглобин синтезируется в клетках красного костного мозга. Для нормального синтеза гемоглобина необходимо достаточное поступление железа. Разрушение молекулы гемоглобина осуществляется преимущественно в клетках мононуклеарной фагоцитарной системы (ретикуло-эндотелиальной системы), к которой относятся специальные клетки печени, селезенки, костного мозга, моноциты крови.

Функции гемоглобина. Дыхательная функция гемоглобина осуществляется за счет переноса кислорода от легких к тканям и углекислого газа от клеток к органам дыхания.

Гемоглобин выполняет свои функции лишь при условии нахождения его в эритроцитах. Если по каким-то причинам гемоглобин появляется в плазме (гемоглобинемия), то он не способен выполнять свои функции, так как быстро захватывается клетками мононуклеарной фагоцитарной системы и разрушается, а часть его выводится через почечный фильтр (гемоглобинурия).

Гемолиз.

Гемолиз - разрушение эритроцитов с выходом гемоглобина в окружающую эритроциты среду. Гемолиз может наблюдаться как в сосудистом русле, так и вне организма.

Вне организма гемолиз может быть вызван гипотоническими растворами. Этот вид гемолиза называют осмотическим. Резкое встряхивание крови или ее перемешивание приводит к разрушению оболочки эритроцитов — механический гемолиз. Некоторые химические вещества (кислоты, щелочи, эфир, хлороформ, спирт) вызывают свертывание (денатурацию) белков и нарушение целости оболочки эритроцитов, что сопровождается выходом из них гемоглобина — химический гемолиз. Изменение оболочки эритроцитов с последующим выходом из них гемоглобина наблюдается также под влиянием физических факторов. В частности, при действии высоких температур происходит свертывание белков. Замораживание крови сопровождается разрушением эритроцитов.

В организме постоянно в небольших количествах происходит гемолиз при отмирании старых эритроцитов. В норме он происходит лишь в печени, селезенке, красном костном мозге. Гемоглобин «поглощается» клетками указанных органов и в плазме циркулирующей крови отсутствует. При некоторых состояниях организма и заболеваниях гемолиз сопровождается появлением гемоглобина в плазме циркулирующей крови (гемоглобинемия) и выделением его с мочой (гемоглобинурия). Это наблюдается, например, при укусе ядовитых змей, скорпионов, множественных укусах пчел, при малярии, при переливании несовместимой в групповом отношении крови.

Лейкоциты.

Лейкоциты, или белые кровяные тельца,— бесцветные клетки, содержащие ядро и протоплазму. Размер их 8—20 мкм. В крови здоровых людей в состоянии покоя количество лейкоцитов колеблется в пределах 4,0—9,0- 109 (4000—9000 в 1 мм3). Увеличение количества лейкоцитов в крови называетсялейкоцитозом, уменьшение — лейкопенией.

Различают физиологический и реактивный лейкоцитоз. Физиологический лейкоцитоз наблюдается после приема пищи, во время беременности, при мышечной работе, сильных эмоциях, болевых ощущениях. Реактивныйлейкоцитоз возникает при воспалительных процессах и инфекционных заболеваниях.

Лейкоциты делятся на две группы: зернистые лейкоциты, или гранулоциты, и незернистые, или агранулоциты.

Зернистые лейкоциты отличаются от незернистых тем, что их протоплазма имеет включения в виде зерен, которые способны окрашиваться различными красителями. К гранулоцитам относятся нейтрофилы,эозинофилы и базофилы. Нейтрофилы по степени зрелости делятся на миелоциты, метамиелоциты (юные нейтрофилы), палочко-ядерные и сегментоядерные. Основную массу в циркулирующей крови составляют сегментоядерные нейтрофилы. Миелоциты и метамиелоциты в крови здоровых людей не встречаются.

Агранулоциты не имеют в своей протоплазме включений. К ним относятся лимфоциты и моноциты.

Процентное соотношение между отдельными видами лейкоцитов называют лейкоцитарной формулой

 

Базофилы Эозинофилы Нейтрофилы Лимфоциты Моноциты
    миелоциты метамиелоциты палоч-коядер-ные сегменто- ядерные    
0-1 0,5—5 1-6 47—72 19—37 3-11    

 

При ряде заболеваний характер лейкоцитарной формулы меняется. При острых воспалительных процессах (острый бронхит, пневмония) увеличивается количество нейтрофильных лейкоцитов(нейтрофилия).При аллергических состояниях (бронхиальная астма, сенная лихорадка) преимущественно возрастает содержание эозинофилов (эозинофилия). Эозинофилия наблюдается также при глистных инвазиях. Для вялотекущих хронических заболеваний (ревматизм, туберкулез) характерно увеличение количества лимфоцитов (лимфоцитоз). Таким образом, анализ лейкоцитарной формулы имеет диагностическое значение.

Свойства лейкоцитов. Амебовидная подвижность — способность лейкоцитов активно передвигаться за счет образования протоплазматических выростов — ложноножек (псевдоподий). Под диапедезом следует понимать свойство лейкоцитов проникать через стенку капилляра. Кроме того, лейкоциты могут поглощать и переваривать инородные тела и микроорганизмы - фагоцитоз.

Большая часть лейкоцитов (более 50%) находится за пределами сосудистого русла, около 30% - в костном мозге. Очевидно, для лейкоцитов, за исключением базофилов, кровь играет роль, прежде всего, переносчика - она доставляет их от места образования к тем местам организма, где они необходимы.

Функции лейкоцитов.Основная функция лейкоцитов – защитная. Лейкоциты действуют преимущественно в соединительной ткани различных органов. В кровеносном русле лейкоциты циркулируют на протяжении нескольких часов (от 4 до 72). Потом они выходят через стенку капилляров и расселяются по тканям.

Эозинофилы – разрушают токсины белкового происхождения, чужеродные белки и комплексы антиген-антитело. Гистамин является стимулом для увеличения количества эозинофилов.

Базофилы – продуцируют и содержат биологически активные вещества (гистамин, гепарин). Гепарин препятствует свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует рассасыванию и заживлению.

Нейтрофилы – защищают организм от проникающих в него микробов и их токсинов. Они быстро появляются на месте повреждения или воспаления. Нейтрофилы фагоцитируют живые и мертвые микробы, разрушающиеся клетки, чужеродные частицы, а затем переваривают их при помощи собственных ферментов. Нейтрофилы продуцируют интерферон, оказывающий противовирусное действие.

Моноциты – проявляют выраженную фагоцитарную активность. В очаге воспаления моноциты фагоцитируют микробы, погибшие лейкоциты, поврежденные клетки воспаленной ткани, т.е. они очищают очаг воспаления и подготавливают место для регенерации ткани.

Лимфоциты – являются одним из центральных звеньев иммунной системы организма, осуществляют формирование специфического иммунитета, реализацию иммунного надзора, благодаря способности различать «свое» и «чужое». Лейкоциты осуществляют синтез защитных антител, лизис чужеродных клеток, обеспечивают реакцию отторжения трансплантата, уничтожают мутантные клетки организма и обеспечивают иммунную память.

Различают В- и Т-лимфоциты. Основная функция В-лимфоцитов заключается в создании гуморального иммунитета путем выработки антител, которые при встрече с соответствующими им инородными веществами связывают их и нейтрализуют, тем самым подготавливая процесс последующего фагоцитоза.

Т-лимфоциты обеспечивают клеточный иммунитет. Различают несколько форм Т-лимфоцитов. Клетки-хелперы (помощники) взаимодействуют с В-лимфоцитами, превращая их в плазматические клетки. Клетки- супрессоры (угнетатели) блокируют чрезмерные реакции В-лимфоцитов и поддерживают постоянное соотношение разных форм лимфоцитов. Клетки-киллеры (убийцы) непосредственно осуществляют реакции клеточного иммунитета. Они взаимодействуют с чужеродными клетками или своими, приобретшими несвойственные им качества (опухолевые клетки, клетки-мутанты), разрушая их.

Тромбоциты.

Тромбоциты, или кровяные пластинки, представляют собой образования овальной или округлой формы диаметром 2—5 мкм. Количество в крови тромбоцитов составляет 180—320 х 109 (180 000—320 000 в 1 мм3). Увеличение содержания тромбоцитов в периферической крови называется тромбоцитозом, уменьшение — тромбоцитопенией.

Свойства тромбоцитов. Тромбоциты способны к фагоцитозу и передвижению за счет образования ложноножек (псевдоподий). К физиологическим свойствам тромбоцитов также относятся их способность прилипать к чужеродной поверхности (адгезия) и склеиваться между собой (агрегация) под влиянием разнообразных причин. Тромбоциты очень легко разрушаются. Они способны выделять и поглощать некоторые биологически активные вещества: серотонин, адреналин, норадреналин. Все рассмотренные особенности кровяных пластинок обусловливают их участие в остановке кровотечения.

Функции тромбоцитов. Тромбоциты принимают активное участие в процессе свертывания крови и фибринолиза (растворение кровяного сгустка).

Гемостаз.

Это совокупность физиологических процессов, завершающихся остановкой кровотечения при повреждении сосудов.

Различают два механизма остановки кровотечения:сосудисто-тромбоцитарный или микроциркуляторный гемостаз и свертывание крови с последующей ретракцией (сокращением) кровяного сгустка.

Сосудисто-тромбоцитарный,илимикроциркуляторный гемостаз - остановка кровотечения из мелких сосудов с довольно низким кровяным давлением. Процесс остановки кровотечения в этих сосудах слагается из следующих компонентов:

1) сосудистого спазма (временного и продолжительного) ;

2) образования, уплотнения и сокращения тромбоцитарной пробки, обеспечивающей надежный гемостаз.

При травме рефлекторно происходит уменьшение просвета (спазм) мелких кровеносных сосудов. Рефлекторный спазм сосудов является кратковременным. Более длительный спазм сосудов поддерживается действием серотонина, норадреналина, адреналина, которые освобождаются из тромбоцитов и поврежденных клеток тканей.

Спазм сосудов приводит лишь к временной остановке кровотечения. Основное же значение для гемостаза в зоне мелких кровеносных сосудов (микроциркуляции) имеет процесс формированиятромбоцитарной пробки. В основе ее образования лежит способность тромбоцитов прилипать к чужеродной поверхности и склеиваться друг с другом. Образовавшаяся тромбоцитарная пробка, или тромбоцитарный тромб, уплотняется в результате сокращения специального белка (тромбостенина), содержащегося в тромбоцитах, который напоминает по своим свойствам сократительный белок мышечной ткани.

Свертывание крови. Свертывание крови (гемокоагуляция) является важнейшим защитным механизмом организма, предохраняющим его от кровопотери в случае повреждения кровеносных сосудов, в основном, мышечного типа.

Свертывание крови — сложный биохимический и физико-химический процесс, в итоге которого растворимый белок крови — фибриноген переходит в нерастворимое состояние — фибрин.

Свертывание крови по своей сущности представляет собой ферментативныйпроцесс. Вещества, участвующие в этом процессе, получили название факторов системы свертывания крови, которые делят надве группы:

1) обеспечивающие и ускоряющие процесс гемокоагуляции (акцелераторы);

2) замедляющие или прекращающие его (ингибиторы).

В плазме крови обнаружены 17 факторов системы гемокоагуляции. Большинство факторов образуется в печени и для их синтеза необходим витамин К. Они находятся в крови в неактивном состоянии и активируются при повреждении сосудистой стенки. При недостатке или снижении активности факторов свертывания крови может наблюдаться патологическая кровоточивость. В частности, при дефиците плазменных факторов, называемых антигемофильными глобулинами, проявляются различные формы гемофилии.

Процесс свертывания крови осуществляется в три фазы.

ВI фазу процесса свертывания крови образуется протромбиназа.

Во время II фазы процесса свертывания крови образуется активный протеолитический фермент — тромбин.Этот фермент появляется в крови в результате воздействия протромбиназы на протромбин.

III фаза свертывания крови связана с превращением фибриногена в фибрин под влиянием протеолитического фермента тромбина.

Для осуществления всех фаз процесса свертывания крови необходимыионы кальция. В дальнейшем под влиянием тромбоцитарных факторов наступает сокращение нитей фибрина (ретракция), в результате чего происходит уплотнение сгустка и выделение сыворотки. Следовательно, сыворотка крови отличается по своему составу от плазмы отсутствием в ней фибриногена и некоторых других веществ, участвующих в процессе свертывания крови. Кровь, из которой удален фибрин, называют дефибринированной. Она состоит из форменных элементов и сыворотки.

Ингибиторы гемокоагуляции препятствуют внутрисосудистому свертыванию крови или замедляют этот процесс. Наиболее мощным ингибитором свертывания крови является гепарин.

Гепарин— естественный антикоагулянт широкого спектра действия, образуется в лаброцитах (тучных клетках) и базофильных лейкоцитах. Гепарин тормозит все фазы процесса свертывания крови. Кровь, покидая сосудистое русло, свертывается и тем самым ограничивает кровопотерю. В сосудистом же русле кровь жидкая, поэтому она и выполняет все свои функции. Это объясняется тремя основными причинами: 1) факторы системы свертывания крови в сосудистом русле находятся в неактивном состоянии; 2) наличие в крови, форменных элементах и тканях антикоагулянтов (ингибиторов), препятствующих образованию тромбина; 3) наличие интактного (неповрежденного) эндотелия сосудов.

Антиподом системы гемокоагуляции является фибринолитическая система, основной функцией которой расщепление нитей фибрина на растворимые компоненты. В ее состав входятфермент плазмин (фибринолизин), находящийся в крови в неактивном состоянии, в виде плазминогена (профибринолизина), активаторы и ингибиторы фибринолиза. Активаторы стимулируют превращение плазминогена в плазмин, ингибиторы тормозят этот процесс.

Процесс фибринолиза необходимо рассматривать в совокупности с процессом свертывания крови.Изменение функционального состояния одной из них сопровождается компенсаторными сдвигами в деятельности другой.

Нарушение функциональных взаимосвязей между системами гемокоагуляции и фибринолиза можетпривести к тяжелым патологическим состояниям организма, либо к повышенной кровоточивости, либо к внутрисосудистому тромбообразованию.

Функциональное состояние систем свертывания крови и фибринолиза поддерживается и регулируется нервными игуморальными механизмами.

 

 

Общее количество лейкоцитов 4-9 *109

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.