Сделай Сам Свою Работу на 5
 

Группа стандартов CMM, разработанных SEI

Модель зрелости возможностей CMM (Capability Maturity Model)[9,10] предлагает

различного уровня. Для этого определяются 3 уровня элементов: уровни зрелости организации (maturity levels), ключевые области процесса (key process areas) и ключевые практики (key practices). Чаще всего под моделью CMM имеют в виду модель уровней зрелости. В настоящий момент CMM считается устаревающей и сменяется моделью CMMI (см. ниже).

o Уровни зрелости. CMM описывает различные степени зрелости процессов в организациях, определяя 5 уровней организаций.

􀂃 Уровень 1, начальный (initial). Организации, разрабатывающие ПО, но не имеющие осознанного процесса разработки, не производящие планирования и оценок своих возможностей.

􀂃 Уровень 2, повторяемый (repeatable). В таких организациях ведется учет затрат ресурсов и отслеживается ход проектов, установлены правила управления проектами, основанные на имеющемся опыте.

􀂃 Уровень 3, определенный (defined). В таких организациях имеется принятый, полностью документированный, соответствующий реальному положению дел и доступный персоналу процесс разработки и сопровождения ПО. Он должен включать как управленческие, так и технические подпроцессы, а также обучение сотрудников работе с ним.

􀂃 Уровень 4, управляемый (manageable). В этих организациях, помимо установленного и описанного процесса, используются измеримые показатели качества продуктов и результативности процессов, которые позволяют достаточно точно предсказывать объем ресурсов (времени, денег, персонала), необходимый для разработки продукта с определенным качеством.

􀂃 Уровень 5, совершенствующийся (optimizing). В таких организациях, помимо процессов и методов их оценки, имеются методы определения слабых мест, определены процедуры поиска и оценки новых методов и техник разработки, обучения персонала работе с ними и их включения в общий процесс организации в случае повышения эффективности производства.

o Ключевые области процесса. Согласно CMM, уровни зрелости организации можно определять по использованию четко определенных техник и процедур, относящихся к различным ключевым областям процесса. Каждая такая область представляет собой набор связанных видов деятельности, которые нацелены на достижение целей, существенных для общей оценки результативности технологического процесса. Всего выделяется 18 областей. Множество областей, которые должны поддерживаться организацией, расширяется при переходе к более высоким уровням зрелости.



􀂃 К первому уровню не предъявляется никаких требований.

􀂃 Организации второго уровня зрелости должны поддерживать управление требованиями, планирование проектов, надзор за ходом проекта, управление подрядчиками, обеспечение качества ПО, управление конфигурацией.

􀂃 Организации третьего уровня должны, помимо деятельностей второго уровня, поддерживать проведение экспертиз, координацию деятельности отдельных групп, разработку программного продукта, интегрированное управление разработкой и сопровождением, обучение персонала, выработку и поддержку технологического процесса организации, контроль соблюдения технологического процесса организации.

􀂃 К деятельностям организаций четвертого уровня добавляются: управление качеством ПО и управление процессом, основанное на измеримых показателях.

􀂃 Организации пятого уровня зрелости должны дополнительно поддерживать управление изменениями процесса, управление изменениями используемых технологий и предотвращение дефектов.

o Ключевые практики. Ключевые области процесса описываются с помощью наборов ключевых практик. Ключевые практики классифицированы на несколько видов: обязательства (commitments to perform), возможности (abilities to perform), деятельности (activities performed), измерения (measurements and analysis) и проверки (verifying implementations). Например, управление требованиями связано со следующими практиками.

􀂃 Обязательство. Проекты должны следовать определенной политике организации по управлению требованиями.

􀂃 Возможности. В каждом проекте должен определяться ответственный за анализ системных требований и привязку их к аппаратному, программному обеспечению и другим компонентам системы. Требования должны быть документированы. Для управления требованиями должны быть выделены адекватные ресурсы и бюджет. Персонал должен проходить обучение в области управления требованиями.

􀂃 Деятельности. Прежде чем быть включенными в проект, требования подвергаются анализу на полноту, адекватность, непротиворечивость и пр. Выделенные требования используются в качестве основы для планирования и выполнения других работ. Изменения в требованиях анализируются и включаются в проект.

􀂃 Измерение. Производится периодическое определение статуса требований и статуса деятельности по управлению ими.

􀂃 Проверки. Деятельность по управлению требованиями периодически анализируется старшими менеджерами. Деятельность по управлению требованиями периодически и на основании значимых событий анализируется менеджером проекта. Группа обеспечения качества проводит анализ и аудит деятельности по управлению требованиями и отчитывается по результатам этого анализа.

Таблица 4 суммирует информацию о количестве практик различных видов, приписанных к разным ключевым областям процесса.

 

 

Уровни Область процесса Обязательства Возможности Деятельности Измерения Проверки
Управление требованиями
Планирование проектов
Надзор за ходом проекта
Управление подрядчиками
Обеспечение качества ПО
Управление конфигурацией          
Контроль соблюдения технологического процесса          
Выработка и поддержка технологического процесса          
Обучение персонала
Интегрированное управление          
Разработка программного продукта          
Координация деятельности групп          
Проведение экспертиз
Управление процессом на основе метрик          
Управление качеством ПО
Предотвращение дефектов
Управление изменениями технологий          
Управление изменениями процесса          

 

Таблица 4. Количество ключевых практик в разных областях процесса по CMM версии 1.1.

 

Модели жизненного цикла

Все обсуждаемые стандарты так или иначе пытаются описать, как должен выглядеть любой процесс разработки ПО. При этом они вынуждены вводить слишком общие модели жизненного цикла ПО, которые тяжело использовать при организации конкретного проекта.

В рамках специфических моделей жизненного цикла, которые предписывают правила организации разработки ПО в рамках данной отрасли или организации, определяются более конкретные процессы разработки. Отличаются они от стандартов, прежде всего, большей детальностью и четким описанием связей между отдельными видами деятельности, определением потоков данных (документов и артефактов) в ходе жизненного цикла. Таких моделей довольно много, ведь фактически каждый раз, когда некоторая организация определяет собственный процесс разработки, в качестве основы этого процесса разрабатывается некоторая модель жизненного цикла ПО. В рамках данной лекции мы рассмотрим лишь несколько моделей. К сожалению, очень тяжело выбрать критерии, по которым можно было бы дать хоть сколько-нибудь полезную классификацию известных моделей жизненного цикла.

Наиболее широко известной и применяемой долгое время оставалась так называемая каскадная или водопадная (waterfall) модель жизненного цикла, которая, как считается, была впервые четко сформулирована в работе [13] и впоследствии запечатлена в стандартах министерства обороны США в семидесятых-восьмидесятых годах XX века. Эта модель предполагает последовательное выполнение различных видов деятельности, начиная с выработки требований и заканчивая сопровождением, с четким определением границ между этапами, на которых набор документов, созданный на предыдущей стадии, передается в качестве входных данных для следующей. Таким образом, каждый вид деятельности выполняется на какой-то одной фазе жизненного цикла. «Классическая» каскадная модель предполагает только движение вперед по этой схеме: все необходимое для проведения очередной деятельности должно быть подготовлено в ходе предшествующих работ. Выработка системных требований Выработка требований к ПО Эксплуатация

Тестирование

Кодирование

Проектирование

Анализ

Однако, если внимательно прочитать статью [13], оказывается, что она не предписывает следование именно этому порядку работ, а, скорее, представляет модель итеративного процесса — в ее последовательном виде эта модель закрепилась, по-видимому, в представлении чиновников из министерств и управленцев компаний, работающих с этими министерствами по контрактам. При реальной работе в соответствии с моделью, допускающей движение только в одну сторону, обычно возникают проблемы при обнаружении недоработок и ошибок, сделанных на ранних этапах. Но еще более тяжело иметь дело с изменениями окружения, в котором разрабатывается ПО (это могут быть изменения требований, смена подрядчиков, изменения политик разрабатывающей или эксплуатирующей организации, изменения отраслевых стандартов, появление конкурирующих продуктов и пр.).

Работать в соответствии с этой моделью можно, только если удается предвидеть заранее возможные перипетии хода проекта и тщательно собирать и интегрировать информацию на первых этапах, с тем, чтобы впоследствии можно было пользоваться их результатами без оглядки на возможные изменения. Выработка системных требований Выработка требований к ПО

Эксплуатация

Тестирование

Кодирование

Проектирование

Анализ

Среди разработчиков и исследователей, имевших дело с разработкой сложного ПО, практически с самого зарождения индустрии производства программ (см., например, [14])

 


Рис. 6.1. Примерная архитектура авиасимулятора

 


Рис. 6.1 показывает набросок архитектуры такого авиасимулятора. Каждый из указанных компонентов решает свои задачи, которые необходимы для работы всей системы. В совокупности они решают все задачи системы в целом. Стрелками показаны потоки данных и управления между компонентами. Пунктирные стрелки изображают потоки данных, передаваемых для протоколирования.

Архитектура определяет большинство характеристик качества ПО в целом. Архитектура служит также основным средством общения между разработчиками, а также между разработчиками и всеми остальными лицами, заинтересованными в данном ПО.

Выбор архитектуры задает способ реализации требований на высоком уровне абстракции. Именно архитектура почти полностью определяет такие характеристики ПО как надежность, переносимость и удобство сопровождения. Она также значительно влияет на удобство использования и эффективность ПО, которые, однако, сильно зависят и от реализации отдельных компонентов. Значительно меньше влияние архитектуры на функциональность — обычно заданную функциональность можно реализовать, использовав совершенно различные архитектуры.

Поэтому выбор между той или иной архитектурой определяется в большей степени именно нефункциональными требованиями и необходимыми свойствами ПО с точки зрения удобства сопровождения и переносимости. При этом для построения хорошей архитектуры надо учитывать возможные противоречия между требованиями к различным характеристикам и уметь выбирать компромиссные решения, дающие приемлемые значения по всем показателям.

Так, для повышения эффективности в общем случае выгоднее использовать монолитные архитектуры, в которых выделено небольшое число компонентов (в пределе — единственный компонент). Этим обеспечивается экономия как памяти, поскольку каждый компонент обычно имеет свои данные, а здесь число компонентов минимально, так и времени работы, поскольку возможность оптимизировать работу алгоритмов обработки данных имеется также только в рамках одного компонента.

С другой стороны, для повышения удобства сопровождения, наоборот, лучше разбить систему на большое число отдельных маленьких компонентов, с тем чтобы каждый из них решал свою небольшую, но четко определенную часть общей задачи. При этом, если возникают изменения в требованиях или проекте, их обычно можно свести к изменению в постановке одной, реже двух или трех таких подзадач и, соответственно, изменять только отвечающие за решение этих подзадач компоненты.

С третьей стороны, для повышения надежности лучше использовать либо небольшой набор простых компонентов, либо дублирование функций, т.е. сделать несколько компонентов ответственными за решение одной подзадачи. Заметим, однако, что ошибки в ПО чаще всего носят неслучайный характер. Они повторяемы, в отличие от аппаратного обеспечения, где ошибки связаны часто со случайными изменениями характеристик среды и могут быть преодолены простым дублированием компонентов без изменения их внутренней реализации. Поэтому при таком обеспечении надежности надо использовать достаточно сильно отличающиеся способы решения одной и той же задачи в разных компонентах.

Другим примером противоречивых требований служат характеристики удобства использования и защищенности. Чем сильнее защищена система, тем больше проверок, процедур идентификации и пр. нужно проходить пользователям. Соответственно, тем менее удобна для них работа с такой системой. При разработке реальных систем приходится искать некоторый разумный компромисс, чтобы сделать систему достаточно защищенной и способной поставить ощутимую преграду для несанкционированного доступа к ее данным и, в то же время, не отпугнуть пользователей сложностью работы с ней. Список стандартов, регламентирующих описание архитектуры, которое является основной составляющей проектной документации на ПО, выглядит так:

· IEEE 1016-1998 Recommended Practice for Software Design Descriptions [2] (рекомендуемые методы описаний проектных решений для ПО).

· IEEE 1471-2000 Recommended Practice for Architectural Description of Software-Intensive Systems [3] (рекомендуемые методы описания архитектуры программных систем).

Основное содержание этого стандарта сводится к определению набора понятий, связанных с архитектурой программной системы.

Это, прежде всего, само понятие архитектуры как набора основополагающих принципов организации системы, воплощенных в наборе ее компонентов, связях их друг с другом и между ними и окружением системы, а также принципов проектирования и развития системы.

Это определение, в отличие от данного в начале этой лекции, делает акцент не на наборе структур в основе архитектуры, а на принципах ее построения. Стандарт IEEE 1471 определяет также представление архитектуры (architectural description) как согласованный набор документов, описывающий архитектуру с точки зрения определенной группы заинтересованных лиц с помощью набора моделей. Архитектура может иметь несколько представлений, отражающих интересы различных групп заинтересованных лиц.

Стандарт рекомендует для каждого представления фиксировать отраженные в нем взгляды и интересы, роли лиц, которые заинтересованы в таком взгляде на систему, причины, обуславливающие необходимость такого рассмотрения системы, несоответствия между элементами одного представления или между различными представлениями, а также различную служебную информацию об источниках информации, датах создания документов и пр.

Стандарт IEEE 1471 отмечает необходимость использования архитектуры системы для решения таких задач, как следующие:

 



©2015- 2022 stydopedia.ru Все материалы защищены законодательством РФ.