Сделай Сам Свою Работу на 5

Электропроводность полупроводников.





К полупроводникам относятся вещества с полностью заполненной валентной зоной и не заполненной зоной проводимости при температуре абсолютного нуля, причем ширина разделяющей их запрещенной зоны может быть невелика (т.н. узкозонные полупроводники) или же достаточно большая (т.н. широкозонные полупроводники). Различают также собственные и примесные полупроводники. К собственным полупроводникам относят химически чистые полупроводники. Их электропроводность может возникнуть только в результате перехода электронов с верхних уровней валентной зоны на нижние уровни зоны проводимости. Освобождение одного из уровней валентной зоны трактуется как возникновение подвижной дырки, в то время как занятие электроном уровня в зоне проводимости – как рождение свободного электрона. Тепловым возбуждением этот процесс обычно реализуется только в узкозонных полупроводниках, в которых таким образом может одновременно существовать как электронная, так и дырочная электропроводность. В широкозонных полупроводниках носители тока не генерируются тепловым образом, и такие вещества адекватны диэлектрикам. Их электропроводность может быть реализована в основном только с помощью примесей. Проводящие свойства примесных полупроводников определяются вводимым в собственные полупроводники относительно малым количеством примесных атомов, которые могут быть либо донорами, либо акцепторами электронов. В первом случае доноры имеют собственный энергетический уровень электрона вблизи «дна» пустой при нулевой абсолютной температуре зоны проводимости, причем они легко отдают этот электрон в зону проводимости путем их теплового возбуждения, что и ведет к рождению свободного электрона. Во втором случае т.н. акцепторы – атомы, способные привязать к себе избыточный электрон, - отбирают этот в сущности валентный электрон от рядового атома кристаллической решетки, создавая в нем вакансию электрона, т.е. дырку, которая может перемещаться по объему, как положительно заряженная частица. Очевидно, чтобы это состоялось, необходимо наличие у примесного атома не занятого уровня энергии электрона, расположенного не далеко от «потолка» валентной зоны. Таким образом, в примесных широкозонных полупроводниках возможны чистая электронная, чистая дырочная или, наконец, смешанная электропроводность.





В полупроводнике, обладающем собственной электропроводностью, кон­центра­ция электронов, перешедших в зону проводимости, равна концен­трации дырок, образовавшихся в валентной зоне, поэтому для удельной электропроводности такого полупроводника справедливо выражение

(16)

где + и - подвижности дырок и электронов соответственно.

В полупроводниках подвижности электронов и дырок (под­вижность электронов обычно выше, чем подвижность дырок) зависят от темпе­ратуры. В таблице приведены в качестве примера значения подвижности электронов и дырок в ряде веществ.

 

Вещество Подвижность
электроны дырки
Алмаз Кремний Германий Сернистый свинец Медь 0,18 0,16 0,38 0,06 0,0035 0,12 0,04 0,18 0,02 -

 

При повышении температуры подвижность как электронов, так и дырок уменьшается за счет увеличения интенсивности тепловых колеба­ний кристаллической решетки, препятствующих направленному движению носителей. С другой стороны, с ростом температуры концентрации электронов в зоне проводимости и ды­рок в валентной зоне резко возрастают.

Любой полупроводник является изолятором при температурах, близких к абсолютному нулю, так как валентная зона целиком заполнена электро­нами, а зона проводимости полностью лишена электронов. Электропроводность возникает только при конечной и достаточно большой абсолютной температуре. Средняя кинетическая энергия электронов при повыше­нии температуры увеличивается, и при ( - ширина запрещенной зоны) электроны переходят из валентной зоны в зону проводимости. Число электро­нов, переходящих из валентной зоны в зону проводимости будет тем больше, чем выше средняя энергия теп­лового движения электронов. Проведем оценку температуры, при которой средняя энергия электронов достаточна для перехода электронов из валентной зоны в зону проводимости для германия.



Ширина запрещенной зоны германия = 0,75эВ = Дж равна тепловой энергии kT при температуре . Более точные оценки показывают, что собственная проводимость в германии наблюдается при температуре Т=900 С.

Приведенные оценки получены с учетом предположения, что все электроны обладают средней кинетической энергией. В электронном газе все электроны распределены по энергиям, и при данной температуре некоторая часть электронов имеет энергию, превышающую среднюю энергию. Результаты соответствующих измерений показывают, что собственная проводимость в германии возникает уже при температуре порядка 300-400 С. Концентрация носителей в зоне проводимости полупроводника при повы­шении температуры увеличивается более резко, чем происходит уменьшение подвижно­сти, поэтому удельная электропроводность полупроводников растет с рос­том температуры. Для полупроводника, обладающего собственной прово­димостью, зависимость удельной электропроводности от температуры вы­ражается следующей формулой:

, (17) где g - ширина запрещенной зоны в полупроводнике.

Для того, чтобы выяснить физический смысл величины , предполо­жим, что . Тогда . Следовательно, - удельная электропроводность полупроводника, обладающего собственной проводимостью, при . Коэффициент незначительно зави­сит от температуры. При графическом изображении зависимости удельной электропро­водности полупроводника от температуры строят логарифмическую зависимость коэффициента от 1/T. Применяя операцию логарифмирования к уравнению (17), получаем:

. (18) Зависимость от представляет собой прямую линию (Рис.2), тангенс угла наклона которой пропорционален ширине запрещенной зоны полупроводника :

.

Как уже отмечалось, в полупроводниках, обладающих примесной проводимостью, локальные донорные или акцепторные энергетические уровни расположены вблизи зоны проводимости или валентной зоны. Следовательно, для переходов электронов с донорных уровней в зону проводимости или из валентной зоны на акцепторный уровень необходимо сообщить значительно меньшую энергию, чем в собственных полупроводниках. Энергия активации примеси при таких переходах будет значительно меньше ширины запрещенной зоны. В результате таких процессов электропроводность в примесных полупроводниках возникает при более низкой температуре, чем в полупроводниках с собственной проводимостью.

Определим значение температуры, при которой в германии n-типа происходит переход электронов с донорных уровней в зону проводимости. Для такого перехода средняя энергия электронов на донорном уровне должна быть больше энергии активации донорного уровня:

.

В реальных условиях примесная проводимость в германии создается при минус . С повышением температуры удельная электропроводность полупроводников, содержащих примеси, возрастет так же, как электропроводность чистых полупроводников, по экспоненциальному закону:

, (19)

где - энергия активации локального уровня, - величина, зависящая от рода полупроводника и слабо зависящая от температуры.

Функциональная связь с Т (19) сохраняется до тех пор, пока все электроны с донорных энергетических будут переходить в зону проводимости n – полупроводника или все вакантные места акцепторных уровней не будут заполнены электронами в р – полупроводнике. При дальнейшем повышении температуры удельная электропроводность перестает повышаться и остается постоянной (или даже несколько уменьшается) до тех пор, пока собственная проводимость полупроводника не будет порядка примесной. В этом случае удельная электропроводность вновь начнет возрастать в соответствии с равенством (17). Теоретический график зависимости удельной электропроводности примесного полупроводника от температуры представлен на рис.3.

Зависимость имеет три характерных участка АБ, БВ и ВГ. Участок АБ определяет поведение примесной электропроводности от температуры в области низких температур (формула 19). На этом участке и увеличение электропроводнос-сти происходит в основном за счет роста концентрации примесных носителей тока в зоне проводимости или в валентной зоне. Угол наклона прямой АБ к оси абсцисс определяет энергию активации примеси

. (20)

Количество носителей заряда, создаваемых примесями в зоне проводимости, увеличивается с ростом температуры до тех пор, пока примеси не истощатся (точка Б.). Дальнейшее повышение температуры не приводит к увеличению электропроводности. Участок БВ соответствует области истощения примесей. В точке В температура достигает такой величины, что становятся возможными переходы электронов непосредственно из валентной зоны в зону проводимости. На участке ВГ полупроводник имеет собственную проводимость, которая изменяется с ростом температуры в соответствии с формулой (17). Угол наклона прямой ВГ к оси абсцисс пропорционален ширине запрещенной зоны полупроводника

(21)

 

Лабораторная установка

 

Для экспериментального изучения температурных зависимостей электропроводности металлов и полупроводников используется стенд с измерительной схемой, и реохордный мост Р38, размещаемые на столе. Внутри стенда расположены образцы исследуемого металла и полупроводника, их нагреватель и милливольтметр термопары, показания которого переводятся в температуру с помощью градуировочного графика, также размещенного на панели стенда. Реохордный мост предназначен здесь для измерения результирующего сопротивления изучаемых образцов на постоянном токе в пределах от 0.3 Ома до 30000 Ом. Основная погрешность моста при измерении на постоянном токе не превышает 5 % на пределе 0.3 Ома до 3 Ом и 1.5 % на остальных пределах. Реохордный мост является уравновешенным одинарным мостом (т.н. мостом Уинстона) со ступенчато регулируемым плечом сравнения и плавно регулируемым отношением плеч, и он размещен в пластмассовом ящике с крышкой. На крышке ящика приведена схема и краткие правила пользования прибором.

В средней части лицевой панели моста расположена шкала, по которой производится отсчет отношения плеч. Под шкалой – ручка для регулирования величины отношения плеч. В левом нижнем углу моста помещен гальванометр, рядом с которым расположен переключатель гальванометра.

В левом верхнем углу ближе к центру расположен переключатель сопротивлений сравнительного плеча. Зажимы для подключения измеряемого сопротивления находятся справа.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.