Сделай Сам Свою Работу на 5

в) приведите механические свойства сплава.





 

а) Бр. ОЦС 6-6-3 – Бронза содержащая три легирующих элемента: олово, цинк и свинец, причем их содержание в сплаве соответственно 6%, 6% и 3%, а остальное медь

б) ОЛОВЯННЫЕ БРОНЗЫ
Оловянные бронзы применяют с древнейших времен и они хорошо освоены промышленностью.
Бронзы отличаются невысокой жидкотекучестью из-за большого интервала кристаллизации. По этой же причине в бронзе не образуется концентрированная усадочная раковина, а возникает рассеянная мелкая пористость. Линейная усадка у оловянных бронз очень невелика и составляет 0,8% при литье в песчаную форму и 1,4% при литье в кокиль. Указанные свойства облегчают получение отливок, от которых не требуется высокой герметичности.

В оловянные бронзы часто вводят фосфор. Фосфор, во-первых, раскисляет медь и уменьшает содержание водорода в расплаве; во-вторых, повышает прочностные свойства; в-третьих, улучшает жидкотекучесть и позволяет получать отливки сложной формы с тонкими стенками, в частности, качественное художественное литье. Фосфор в бронзах с небольшим количеством олова повышает сопротивление износу из-за появления в структуре твердых частичек фосфида меди Си3Р. Однако фосфор ухудшает технологическую пластичность , поэтому в деформируемые сплавы вводят не более 0,5% Р.
Оловянные бронзы легируют цинком в больших количествах, но в пределах растворимости. При таких содержаниях цинк благоприятно влияет на свойства оловянных бронз:



1) снижает склонность к ликвации и повышает жидкотекучесть, поскольку он уменьшает температурный интервал кристаллизации сплавов;
2) способствует получению более плотного литья;
3) раскисляет расплав и уменьшает содержание в нем водорода;
4) улучшает прочностные свойства .
Никель повышает прочностные свойства и улучшает пластичность и деформируемость, повышает их коррозионную стойкость, плотность, уменьшает ликвацию. Бронзы с никелем термически упрочняются закалкой и старением. Свинец повышает жидкотекучесть и плотность, их антифрикционные свойства.
Естественно, желательно применять дешевые недефицитные легирующие элементы. По этой причине в литейных бронзах стремятся уменьшать содержание олова за счет дополнительного легирования другими элементами.
По назначению оловянные бронзы можно разделить на несколько групп :
1) Литейные стандартные БрОЗЦ12С5 Бр05Ц5С5 Бр04Ц4С17 Бр04Ц7С5 БрОЗЦ7С5Н1
2) Литейные ответственного назначения БрО10Ф1 БрО10Ц2 БрО8Ц4 БрОбЦбСЗ БрО10С10 БрО5С25
3) Деформируемые БрОФ8-0,3 БрОФ6,5-0,4 БрОФ6,5-0,15 БрОФ4-0,25 БрОЦ4-3 БрОЦС4-4-2,5



Первая группа — литейные стандартные, предназначенные для получения разных деталей машин методами фасонного литья. К этим бронзам, помимо высоких литейных свойств, пред ъявляются следующие требования:
а) хорошая обрабатываемость резанием;
б) высокая плотность отливок;
в) достаточная коррозионная стойкость;
г) высокие механические свойства.
Вторая группа — литейные нестандартные ответственного назначения, обладающие высокими антифрикционными свойствами и хорошим сопротивлением истиранию. Эти сплавы применяют для изготовления подшипников скольжения и других деталей, работающих в условиях трения. Наибольшей прочностью в сочетании с высокими антифрикционными свойствами обладает бронза Бр010Ф1, что обусловлено высоким содержанием олова и легированием фосфором.
Третья группа — деформируемые , они отличаются от литейных более высокой прочностью, вязкостью, пластичностью, сопротивлением усталости. Основные легирующие элементы в деформируемых бронзах - олово, фосфор, цинк и свинец, причем олова в них меньше, чем в литейных бронзах. Деформируемые бронзы можно разделить на сплавы, легированные оловом и фосфором (БрОФ6,5-0,4; БрОФ6,5-0,15; БрОФ4-0,25), и сплавы, не содержащие фосфора (БрОЦ4-3 и БрОЦС4-4-2,5). Из этих бронз наилучшая обрабатываемость давлением у бронзы БрОЦ4-3. Бронза БрОЦС4-4-2,5, содержащая свинец, совсем не обрабатывается давлением в горячем состоянии из-за присутствия в ней легкоплавкой эвтектики. Эта бронза предназначена для изготовления деталей, работающих в условиях трения, и поэтому легирована свинцом.
Четвертая группа — сплавы художественного литья (БХ1, БХ2, БХЗ). Для изготовления художественных изделий бронза — наиболее подходящий материал. Она достаточно жидкотекуча, хорошо заполняет самые сложные формы, обладает очень небольшой усадкой при затвердевании и поэтому хорошо передает форму изделия. Эти бронзы отличаются красивым цветом, сохраняющимся благодаря их высокой коррозионной стойкости достаточно долгое время. На поверхности бронз под воздействием естественной среды образуется патина — тончайшая оксидная пленка различных цветовых оттенков, от зеленого до темно-коричневого. Патина придает бронзовым скульптурам и декоративным изделиям красивую ровную окраску.
Основные виды термической обработки бронз — гомогенизация и промежуточный отжиг. Основная цель этих операций — облегчение обработки давлением. Гомогенизацию проводят при 700...750 °С с последующим быстрым охлаждением. Для снятия остаточных напряжений в отливках достаточно 1-ч отжига при 250 °С. Промежуточный отжиг при холодной обработке давлением проводят при температурах 550... 700 °С.



в) Таблица 1. — Состав, типичные механические свойства и назначение бронзы (1 Мн/м2 " 0,1 кгс/мм2)

Марка сплава Состав Предел прочности sb, Мн/м2 Относительное удлинение d, % Твердость HB, Мн/м2 Примерное назначение
Бр. ОЦС6-6-3 6% Sn, 6% Zn, 3% P Антифрикционные детали и арматура

 

 


4. Вычертите диаграмму состояния железо-карбид железа; опишите превращения и постройте крив ую охлаждения в интервале температур от 1600 °С до 0 °С для сплава с содержанием углерода 1,2%

 

 

Рассмотрим превращения

Feα от низких температур до 768°C, эта фаза имеет объемно-центрированную кубическую решетку (о.ц.к), низкую прочность и твёрдость 80 HB, низкий предел текучести, удельный вес 7,8 г/см3, имеет магнитные свойства (ферромагнетик), растворяет углерод 0,006% при 20°C и 0,02% при 727°C. Твёрдый раствор углерода в Feα называется феррит. Свойства феррита близки к свойствам чистого Fe.

Feβ – о.ц.к., существует от 768°C до 910°C, растворяет углерод в небольших количествах, немагнитен, при 768°C теряет магнетизм, 768°C – точка Кюри, парамагнетик.

В 910-1400°C существует Feγ, с гранецентрированной кубической решеткой (г.ц.к.), это железо немагнитно, растворяет 2,14% C при 1147°C. Раствор углерода в Feγ называется. аустенит, немагнитен, твёрже феррита, достаточно пластичен.

Feδ существует в 1400-1539°C. 1539°C – плавление Fe. Переход Feα→Feγ происходит с изменением объёма (1%) (у α больше V). Fe3C - 6,7% C, твёрдость 800 HB, Fe3C – цементит, при низких температурах магнитен. Fe3C→Fe+ Графит. При 1147°C идёт реакция, в результате которой образуется эвтектика: смесь аустенита и цементита – ледебурит. [А+Ц] - 4,3% C. Феррит+цементит – Перлит. [Ф+Ц] – 0,8% C, твёрдость HB 800. Ла – [А+Ц], Лп – [П+Ц], А→П. Из жидкости выделяется ЦI, из А - ЦII, из Ф - ЦIII. До 2,14% C – стали, после – чугуны. Сначала жидкость переходит в аустенит, потом происходит переход жидкости в ледебурит аустенитовый (эвтектическая реакция), аустенит переходит в перлит (эвтектоидная реакция), аустенит переходит в феррит.

 

Переходы между которыми (так называемые фазовые переходы) сопровождаются скачкообразными измен ениями свободной энергии

энтропии, плот­ности и других физических свойств. Четвертым агрегатным состоянием часто называют плазму — сильно ионизированный газ (т. е. газ за­ряженных частиц — ионов, электронов), образующийся при вы­соких температурах (свыше 105 К). Однако это утверждение неточно, так как между плазмой и газом нет фазового перехода. Темне менее, плазма резко отличается от газа прежде всего сильным электриче­ским взаимодействием ионов и электронов, проявляющимся на боль­ших расстояниях

Реализация того или иного агрегатного состояния вещества за­висит главным образом от температуры и давления, при которых оно находится

В газах межмолекулярные расстояния большие, молекулы практически не взаимодействуют друг с другом и, свободно двигаясь, заполняют весь возможный объем. Таким образом, для газа характерно отсут­ствие собственного объема и формы.

Жидкости и твердые тела относят к конденсированному состоя­нию вещества. В отличие от газообразного состояния у вещества в конденсированном состоянии атомы расположены ближе друг к другу, что приводит к их более сильному взаимодействию и, как следствие этого, жидкости и твердые тела имеют постоянный собст­венный объем. Для теплового движения атомов в жидкости харак­терны малые колебания атомов вокруг равновесных положений и ча­стые перескоки из одного равновесного положения в другое. Это приводит к наличию в жидкости только так называемого ближнего соседних атомов на расстояниях, сравнимых с меж­атомными. Для жидкости в отличие от твердого тела характерно та­кое свойство, как текучесть.

Атомы в твердом теле, для которого в отличие от жидкого тела характерна стабильная, постоянная собственная форма, совершают только малые колебания около своих равновесных положений. Это приводит к правильному чередованию атомов на одинаковых расстояниях для сколь угодно далеко удаленных атомов, т. е существования

так называемого дальнего порядка в расположении атомов. Такое правильное, регулярное расположение атомов в твердом теле, характеризующееся периодической повторяемостью в трех измерениях образует кристаллическую решетку, а тела, имеющие кри­сталлическую решетку, называют твердыми телами. Кроме того, существуют аморфные тела (стекло, воск и т. д.). В аморфных телах атомы совершают малые колебания вокруг хаотически расположенных равновесных положений, т. е. не образуют кристаллическую решетку. Аморфное тело находится с термодинамической точки зре­ния в неустойчивом (так называемом метастабильном) состоянии и его следует рассматривать как сильно загустевшую жидкость, ко­торая с течением времени должна закристаллизоваться, т. е. атомы в твердом теле должны образовать кристаллическую решетку и пре­вратиться в истинно твердое тело.

Аморфное состояние образуется при быстром- (106 О С/с и более) охлаждении расплава. Например, при охлаждении ряда сплавов из жидкого состояния образуются так называемые металлические стекла, обладающие специфическими физико-механическими свойствами.

Атомы в кристаллическом твердом теле располагаются в пространстве закономерно, периодически повторяясь в трех измерениях через строго определенные расстояния, т. е. образуют кристаллическую решетку. Кристаллическую решетку можно «построить», выбрав для этого определенный «строи тельный блок» (аналогично постройке стены из кирпичей) и многократно смещая этот блок по трем, непараллельным направлениям. Такая «строительная» единица кристаллической решетки имеет форму параллелепипеда и называется элементарной ячейкой. Все элемен­тарные ячейки, составляющие кристаллическую решетку, имеют одинаковую форму и объемы. Атомы могут располагаться как в вер­шинах элементарной ячейки, так и в других ее точках (в узлах кри­сталлической решетки). В первом случае элементарные ячейки назы­ваются простыми (примитивными), во втором — сложными. Если форма элементарной ячейки определена и известно расположение всех атомов внутри нее, то имеется полное геометрическое описание кристалла, т. е. известна его атомно-кристаллическая структура.

 

 
 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.