Метод пропорциональных величин.
В ветви наиболее удаленной от источника (R6) задаются некоторым значением тока или напряжения. Для удобства расчетов обычно это 1А или 1В. Затем перемещаясь к началу цепи определяют поочередно токи и напряжения всех ветвей вплоть до ветви, содержащей источник. Тем самым определяют какие напряжение Uвх и ток Iвх. должен иметь источник для того, чтобы вызвать во всех ветвях токи и напряжения вычисленных значений. Если ЭДС (Е) или задающий ток (J) с этими значениями не совпадают, то необходимо пропорционально изменить вычисленные значения токов и напряжений ветвей путем умножениях их на отношение или .
Пусть I6= 1. Тогда
I3 можно определить по I закону Кирхгофа:
U24 определяем по II закону Кирхгофа:
По закону Ома: , по I закону Кирхгофа: .
Метод эквивалентных преобразований. Формула токов в параллельных ветвях.
Разветвленную цепь с одним источником обычно упрощают, преобразуя в неразветвленную.
Если цепь питается источником тока, то определяется напряжение
Дальнейший расчет: .
Ток I3 определяется по закону Кирхгофа:
При расчетах удобно пользоваться формулой о токах в двух параллельных пассивных ветвях. Выведем ее на примере схемы. Напряжение по закону Ома определяется по формуле
Тогда ток
Метод уравнений Кирхгофа.
1. Обозначить токи ветвей и произвольно выбрать их положительное направление.
2. Произвольно выбрать опорный узел и совокупность p = m – n + 1 независимых контуров.
3. Для всех узлов, кроме опорного, составить уравнения по I закону Кирхгофа. Таких уравнений должно быть (n – 1).
4. Для каждого выбранного контура составить уравнения по II закону Кирхгофа. Таких уравнений должно быть p.
5. Система m уравнений Кирхгофа с m неизвестными токами решается совместно и определяются численные значения токов.
6. Если необходимо, рассчитать с помощью обобщенного закона Ома напряжения ветвей или разность потенциалов узлов.
7. Проверить правильность расчета с помощью баланса мощности.
Если в цепи есть q источников тока и контуры выбирать таким образом, чтобы каждый источник тока вошел только в один контур, то количество уравнений по II закону Кирхгофа можно уменьшить до m – n + 1 – q.
Метод Контурных Токов
За искомые принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, которые необходимо было бы составить для схемы по II закону Кирхгофа, т.е. . Основан на II законе Кирхгофа
По найденным контурным токам при помощи I закона Кирхгофа определяются токи ветвей.
Таким образом, методика расчета цепи постоянного тока методом контурных токов следующая:
1. Обозначить все токи ветвей и их положительное направление.
2. Произвольно выбрать совокупность p независимых контуров, нанести на схему положительное направление контурных токов, протекающих в выбранных контурах.
3. Определить собственные, общие сопротивления и контурные ЭДС и подставить их в систему уравнений вида.
Общее сопротивление контура (Rij = Rji) представляет собой алгебраическую сумму сопротивлений потребителей ветви (нескольких ветвей), одновременно принадлежащих i-ому и j-ому контурам. В эту сумму сопротивление входит со знаком «+», если контурные токи протекают через данное сопротивление в одном направлении (согласно), и знак «–», если они протекают встречно.
Собственное сопротивление контура (Rii) представляет собой арифметическую сумму сопротивлений всех потребителей, находящихся в i-ом контуре.
Контурные ЭДС представляют собой алгебраическую сумму ЭДС источников, входящих в контур. Со знаком «+» в эту сумму входят ЭДС источников, действующих согласно с обходом контура, со знаком «–» входят ЭДС источников, действующих встречно.
4. Разрешить полученную систему уравнений относительно контурных токов, используя метод Крамера.
5. Определить токи ветвей через контурные токи по I закону Кирхгофа.
6. Проверить правильность расчетов при помощи баланса мощности.
Если в цепи содержится q источников тока, количество совместно рассматриваемых уравнений сокращается на q и становится равным р – q, поскольку токи в таких ветвях известны Необходимо, чтобы каждый источник тока входил только в один контур.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|