Сделай Сам Свою Работу на 5

Устройство и эксплуатация резервуаров.





Резервуары для хранения нефтепродуктов

Цилиндрические резервуары.Хранение нефтепродуктов на нефтеперерабатывающих заводах производится в резервуарах-стальных, железобетонных, бетонных с облицовками для создания герметичности стен и днища, и в амбарах (ямах).

По отношению к поверхности земли резервуары могут быть наземными, полуподземными и подземными.

В наземных резервуарах днище расположено выше поверхности земли и установлено на фундаменте.

Подземными называются заглубленные резервуары, в которых высший уровень нефтепродукта, при полном заполнении резервуара, находится на 0,2 м ниже планировочной отметки прилегающей территории.

Стальные наземные резервуары строятся следующих конструкций: вертикальные, горизонтальные, шаровые и специальных конструкций (резервуары с плавающими крышами, с дышащими крышами и др.).

Наиболее широко распространены цилиндрические вертикальные резервуары с плоским днищем и конической крышей, рассчитанные на избыточное внутреннее давление в газовом пространстве 2 кПа (200 мм вод. ст.), разрежение 0,25 кПа (25 мм вод. ст.) и рассчитанные на давление и разрежение 0,25 кПа (25 мм вод. ст).



В настоящее время на нефтегазоперерабатывающих заводах применяются стальные вертикальные резервуары с условной емкостью 100, 200, 300, 400, 700, 1000, 2000, 3000, 10 000, 15 000, 20 000, 30 000 и 50 000 м3.

Шаровые резервуары на нефтезаводах применяют для хранения пропан - бутановых фракций, а также в качестве электродегидраторов на установках электрообессоливания нефти. При их сооружении расходуется меньше металла, чем на цилиндрические горизонтальные аппараты. Шаровые и каплевидные резервуары используются для хранения сред с избыточным давлением до 0,2 Мн/м2 и выше.

Каплевидные (сфероидальные) резервуары- резервуары, у которых форма оболочки соответствует форме капли жидкости, лежащей на несмачиваемой горизонтальной поверхности (рис. 2.5.). В основу конструирования таких резервуаров положен принцип равнопрочности оболочки постоянной толщины, при этом полностью используется несущая способность оболочки.

Емкостидля хранения газообразных продуктов называют газгольдерами. Различают газгольдеры постоянного и переменного объема.



Газгольдеры постоянного объема представляют собой резервуары, рассчитанные на давление 2 – 2,5 МН/м2 (в некоторых случаях и на более высокое давление). Изменение количества хранимого в них газа приводит к уменьшению давления внутри газгольдера.

Газгольдеры переменного объема обычно работают при давлении не более 0,065 МН/м2. Их подразделяют на сухие и мокрые. Мокрые газгольдеры представляют собой колокол, плавающий в водяном бассейне. По мере уменьшения количества хранимого газа колокол опускается в бассейн, при этом внутренний его объем соответственно уменьшается.

Мокрые газгольдеры, согласно типовым проектам, изготовляют от 100 до 30 000 м3. Сухой газгольдер имеет перемещающуюся вертикально крышу, связанную со стенками гибкой мембраной или имеющую на краю уплотняющий сальник.


 

Устройство и эксплуатация резервуаров.

На каждый резервуар, находящийся в эксплуатации, должен быть составлен технический паспорт с исполнительной документацией в соответствии с требованиями СНиП 111-В.5-2002. Вновь сооруженный или отремонтированный резервуар может быть введен в эксплуатацию только после его испытаний и приемки специальной комиссией в соответствии с действующими правилами.

Надежность резервуаров – свойство его конструкции выполнять функции приема, хранения и отбора из него нефти и нефтепродуктов при заданных параметрах (уровень, наполнения, плотность и вязкость, температура, скорость закачки и отбора продукта, оборачиваемость резервуара, а также масса снегового покрова, сила ветра, расчетная температура, величина сейсмического воздействия и т. д.).



Критериями, характеризующими эксплутационную надежность резервуаров, являются:

* работоспособность резервуара – это состояние, при котором резервуар способен выполнять свои функции без отклонений от параметров, установленных требованиями технической документации. Для поддержания работоспособности резервуара необходимо выполнять в установленные сроком текущие и капитальные ремонты, а также осуществлять профилактику и раннюю диагностику дефектов;

* безотказность работы резервуара – свойство резервуара и его элементов сохранять работоспособность без вынужденных перерывов в работе. Вероятность безотказной работы служит количественным показателем надежности (критерий прочности, устойчивости и выносливости);

*долговечность резервуара и его надежность – свойство конструкции сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонтов. Показателем долговечности может служить ресурс или срок службы;

* ремонтопригодность элементов резервуаров заключается в приспособленности элементов к предупреждению и обнаружению неисправности, а также и их ремонта в период обслуживания до наступления отказа. Затраты труда, времени и средств на ремонтные работы определяют ремонтопригодность резервуаров.

Операторы, обслуживающие резервуары и резервуарные парки, обязаны хорошо знать устройство и назначение каждого резервуара, схему расположения трубопроводов и назначение всех задвижек, чтобы безошибочно делать необходимые переключения при эксплуатации резервуаров.

При появлении трещин в швах или в основном металле стенки или днищ, резервуар должен быть немедленно опорожнен полностью или частично, в зависимости от способа ремонта.

Резервуары необходимо периодически очищать от осадков парафина и механических примесей специально обученным и подготовленным персоналом. Сроки зачистки определяются в зависимости от вида нефти, но не реже одного раза в два года.

Ремонт резервуаров.

При подготовке резервуаров к ремонтным работам производятся операции по их дегазации, основанные на вытеснении паров горючих жидкостей в атмосферу. Пары нефтепродуктов тяжелее воздуха, они способны накапливаться на территории резервуарного парка в различных углублениях и в смеси с воздухом образовывать взрывоопасные концентрации, особенно в пасмурные дни и при малой скорости ветра.

Взрывоопасные концентрации паров в смеси с воздухом создаются при дегазации и во внутреннем объеме резервуаров, что при наличии источников зажигания (разряды статического электричества, самовозгорания пирофорных отложений, искры вентиляторов и др.) может привести к воспламенению паровоздушных смесей внутри резервуаров или снаружи, которые сопровождаются разрушением аппаратов, возникновением пожара, а иногда поражением людей.

Перспективным методом дегазации является принудительная вентиляция. Подбирается вентилятор, обеспечивающий требуемую кратность воздухообмена. При вместимости резервуара 3000 м3 и более устанавливают несколько вентиляторов.

Дегазацию резервуаров инертными газами (азотом, углекислым газом, продуктами сгорания) применяют при проведении ремонтных работ снаружи резервуаров, без их полной очистки. Безопасное содержание кислорода в объеме резервуара с парами нефтепродуктов зависит от вида применяемого разбавителя паров и составляет от6,5 до 10%. Такой уровень достигается при подаче в резервуар на продувку 4 – 5 объемов инертного газа.

При подготовке к ремонту резервуаров небольшой вместимости, вытеснения паров горючих жидкостей достигают заполнением водой.

Представляет интерес дегазация путем заполнения резервуаров воздушно-механической пеной средней или высокой кратности. В некоторых случаях заполнение резервуаров производят легко разрушающей пеной, газифицированной инертным газом. После заполнения резервуара пена быстро разрушается, и резервуар остается заполненным инертным газом. Такие способы дегазации позволяют производить ремонтные работы без полной очистки резервуаров.

Для отмывки отложений в емкостях и резервуарах при подготовке их к ремонту в ряде случаев применяют растворы поверхностно-активных веществ (ПАВ).

Подлежащий ремонту участок очищают с перекрытием дефекта на 40 – 80 мм в каждую сторону металлической щеткой, напильником или наждачной бумагой и обрабатывают бензином. Перед нанесением состава участок обезжиривают ацетоном. Мелкие трещины и отверстия могут быть ликвидированы без армирующего материала путем покрытия дефектного участка слоем клея толщиной 0,15 мм.

Если известными технологиями покрытия поверхностей различными красками и клеевыми композициями необходимого эффекта достичь не удается, предлагается метод металлизации (покрытие цинком) внутренних поверхностей резервуаров. Новый способ предусматривает покрытие слоем цинка поверхностей толщиной 0,2 мм. Покрытие производится методом напыления расплавленного металла с предварительной обработкой поверхности кварцевым песком.

Резервуар освобождается от продукта, очищается от механических осадков, пропаривается, затем отсоединяются подводящие трубопроводы.

Днище разрезается на отдельные участки, которые отрезаются от корпуса по периметру снаружи и внутри резервуара. Отрезанный металл удаляется из резервуара. Нивелируется и исправляется основание с последующим покрытием гидрофобным изолирующим слоем. Через монтажное окно подаются заготовленные листы днища и окрайки. Днище и окрайки собираются и свариваются в два слоя. Корпус резервуара опускается на окрайки, и завариваются круговые шва, прикрепляющие первый пояс корпуса к днищу. Затем завариваются швы, прикрепляющие окрайки к полотну днища.

Если нет необходимости заменять днище целиком, его ремонтируют. Ремонт заключается в устранении трещин и выпучен. Концы трещины засверливаются сверлом диаметром 6 – 8 мм, затем осуществляется разделка трещины обычным способом, устанавливается накладка и трещина заваривается

Теплообменный аппарат предназначен для передачи теплоты от более нагретых тел к менее нагретым. Теплообменивающиеся среды принято называть теплоносителями. Среда, отдающая тепло, называется теплоносителем, а среда, воспринимающая тепло, называется хладагентом.

На технологических объектах по обезвоживанию, обессоливанию и стабилизации нефти находят применение значительное количество теплообменных аппаратов. В зависимости от технологического назначения теплообменные аппараты имеют различные названия: теплообменники, холодильники, испарители, подогреватели, регенераторы, огневые нагреватели. Огневые нагреватели – это печи, в которых греющим теплоносителем являются продукты сгорания топлива. Разработаны и находят применение различные типы печей, отличающиеся между собой по ряду признаков.

По способу передачи тепла теплообменники относят к одной из следующих групп:

1) поверхностные, в которых участвующие cреды отделены одна от другой стенкой, являющейся поверхностью теплообмена; 2) смесительные, в которых теплообмен осуществляется при непосредственном соприкосновении сред.

К первой группе теплообменников относятся аппараты, где поверхностью нагрева является поверхность труб:

1. Кожухотрубные теплообменники состоят из пучка труб, закрепленных в трубных решетках, которые заключены в общий кожух. Один из теплоносителей циркулирует по трубкам, а другой в межтрубном пространстве. Конструктивно эти теплообменники (рис. 5.1) разделяются на: на одноходовые, в которых теплоноситель проходит параллельно по всем трубам пучка; многоходовые, в которых пучок труб разделен на несколько секций (ходов), а теплоноситель проходит последовательно через все ходы; теплообменники с U- образными трубами, с двойными трубами и перекрестным током теплоносителя.

2. Теплообенники “труба в трубе”, состоят из двух концентрически расположенных труб, в которых один теплоноситель циркулирует по внутренней трубе, а другой по кольцевому пространству между трубами.

3. Подогреватели с паровым пространством -обычно горизонтальные сосуды, в нижней части которых расположены один или два съемных трубных пучка. В трубные пучки подается теплоноситель, за счет его тепла в корпусе происходит испарение более легких продуктов, которые из верхней части удаляются, тяжелый остаток непрерывно выводится через нижний штуцер, расположенный за сливной перегородкой.

Теплообменники кожухотрубные жесткого типа (типа ТН и ТК) изготовляют с поверхностью теплообмена (наружной поверхностью всех труб пучка) от 1 до 2000 м2, на давление 0,6; 1,0; 1,6; 2,5 МПаи применяются при сравнительно малой разности температур теплообменивающихся сред (не более 50 оС). При более высокой разности температур напряжения, возникающие в корпусе и трубках, могут нарушить плотность соединения в местах развальцовки труб, и теплоноситель из межтрубного пространства будет проникать в трубный пучок (или наоборот). Одним из способов компенсации температурных напряжений является установка линзового компенсатора на корпусе Линза компенсатора сваривается из двух торовых полулинз, изготовленных штамповкой. Наружный диаметр линзы обычно больше наружного диаметра корпуса на 250 мм. Линзы можно сваривать в группы по 2 - 6 линз подряд. Одна линза допускает растяжение или сжатие до 8 мм.

Теплообменники кожухотрубныес плавающей головкой (типа ТП). Эти теплообменники, получившие наибольшее распространение на нефтезаводах, применяются для нагрева или охлаждения чаще всего жидких нефтепродуктов. Плавающая головка вследствие независимого крепления ее в корпусе имеет возможность перемещаться в осевом направлении, не передавая тем самым на корпус возникающих в трубном пучке напряжений.

Теплообменники U - образными трубками (типа ТУ) применяют только тогда, когда теплоноситель не вызывает загрязнения трубок, чистка которых механическими средствами затруднена.

Теплообменник типа “труба в трубе” состоит из двух труб разного диаметра, вставленных одна в другую. Одна из сред течет по внутренней трубе, а другая - по кольцевому пространству между трубами. Противоток и высокие скорости турбулентного потока уменьшают возможность отложений на стенках труб. Если нет необходимости чистить теплообменник, то его делают цельносварным, для чего наружная труба по концам обжимается и приваривается к внутренней трубе. Цельносварную конструкцию теплообменника применяют при разности температур стенок труб не более 70 оС. При большей разности температур используют разборные теплообменники.

Эксплуатация теплообменных аппаратов жесткой конструкции.

а) Кожухотрубчатые теплообменники с неподвижными трубными решетками.

Основным недостатком данной конструкции является плохая восприимчивость к температурной напряженности. Теплообменники жесткой конструкции используются при разнице температуры сред не более 50оС. Чтобы избежать аварийную ситуацию при работе с жесткими конструкциями необходимо строго соблюдать необходимые температурные пределы для рабочих сред в соответствии с паспортными данными.

б). Теплообменники типа труба в трубе жесткой конструкции.

Для обеспечения безопасной работы этих аппаратов необходимо соблюдать допустимую разность температур между потоками (как правило, не больше 70оС) и не следует подавать загрязненные среды, вызывающих коррозию внутри труб. Если разность температур сред больше этой величины, то можно использовать аппараты данной конструкции с сальниковым уплотнением возле соединения внутренних и наружных труб.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.