Сделай Сам Свою Работу на 5

Пространственная структура молекул.

Так как АО ориентированы в пространстве, то и ковалентная связь характеризуется направленностью. s-связь - это связь, образованная перекрыванием АО по линии, соединяющей ядра взаимодействующих атомов, s-связь возникает при перекрывании s-s, s-p, р-р и d-d орбиталей; обычно она охватывает два атома и является локализованной двухцентровой связью.

p-связь образована перекрыванием АО по обе стороны линии, соединяющей ядра атомов, может образовываться при р-р, р-d, d-d, f-p,f-d и f-f орбиталей.

d-связь образуется при перекрывании d-орбиталей всеми четырьмя лепестками, то есть при перекрывании d-орбиталей, находящихся в параллельных плоскостях.

p- и d- связи могут налагаться на s-связь с образованием кратных связей (двойных и тройных). Например, в молекулах С2Н4, СО2 имеются двойные связи СН2=СН2, О=С=О; в молекулах С2Н2, N2 - тройная связь: СН≡СН, N N.

Гибридизация АО. При образовании молекул происходит изменение формы и энергии АО. Вместо неравноценных, например, s- и р- орбиталей в молекуле метана СН4 образуются равноценные (гибридные, смешанные) орбитали, имеющие одинаковую форму и энергию. При образовании гибридных связей выделяется больше энергии, энергия системы понижается и образованная молекула более устойчива.

Гибридизация АО приводит к более симметричному распределению электронной плотности в молекуле. s-р -гибридизация дает две гибридные орбитали, расположенные под углом 180°. Смешение одной s и двух р-орбиталей (sр2-гибридизация) приводит к образованию трех гибридных орбиталей, расположенных друг к другу под углом 120°. sр3 - гибридизация дает четыре связи, расположенные под углом 109°28/, то есть образующие тетраэдр.

Полярные и неполярные молекулы.В неполярных молекулах центры тяжести положительных и отрицательных зарядов совпадают, в полярных - нет.

Полярные молекулы являются диполями, имеющими заряды d+ и d-, находящимися на расстоянии 1Д. Для оценки полярности молекул используют электрический момент диполя μ= 1д-d. Если связь неполярная, то и молекула неполярная. Если связи, образующие молекулу, полярные, то μ равен векторной сумме электрических моментов диполей связи, и молекула может быть как неполярной, так и полярной. Например, молекула СО2 (О=С=О) неполярна, хотя связи С=О полярные, так как при сложении происходит компенсация диполей О← С→О и суммарный электрический диполь молекулы равен нулю. А молекула воды полярна, так как при сложении диполей связей образуется диполь молекулы, не равный нулю:



H

O

H

 

Метод молекулярных орбиталей (ММО).Метод валентных связей не может объяснить некоторые явления и факты, например, парамагнитность молекулы О2 (то есть наличие неспаренных электронов). ММО является более универсальным методом, в его рамках эти явления объяснимы.

Основные положения метода: электроны в молекулах распределены по молекулярным орбиталям (МО), которые, подобно АО, характеризуются определенной энергией и формой. МО охватывают всю молекулу, то есть являются двух- и более центровыми. В ММО используется линейная комбинация атомных орбиталей (ЛКАО). При этом соблюдаются следующие правила:

1. Число МО равно общему числу АО, из которых комбинируется МО;

2. Энергия МО может быть ниже и выше исходных АО;

3. Электроны МО, как и АО, заполняют в порядке возрастания энергии при соблюдении принципа запрета Паули и правила Гунда;

4. Наиболее эффективно комбинируются АО с сопоставимыми энергиями и симметрией;

5. Прочность связи в методе МО пропорциональна степени перекрывания АО.

Связывающие и разрыхляющие орбитали.Если АО атомов А и В обозначить через ΨA и ΨВ, а МО через ΨАВ, то согласно ЛКАО ΨАВ = а ΨA ± в ΨВ, где ΨАВ - волновая функция электрона в молекуле (МО), а и в - коэффициенты, учитывающие долю каждой АО в образовании МО, ΨA и ΨВ - волновые функции электрона (АО) в атомах А и В. При знаке «+» в уравнении получается связывающая МО (s, p, δ), при знаке «–« - разрыхляющие МО (МО*: s*, p*, δ* ).

МО s*

 

АО АО

 
 


МО s

 

Диаграмма энергетических уровней АО и МО молекулы водорода.

 

При заполнении связывающих орбиталей соблюдаются следующие правила:

а) число МО равно общему числу АО, из которых комбинируется МО;

б) энергия МО может быть выше и ниже исходных АО;

в) электроны МО как АО заполняют в порядке возрастания энергии при соблюдении принципа запрета Паули и правила Гунда;

г) наиболее эффектно комбинируются АО с сопоставимыми энергиями и симметрией;

д) прочность связи в методе МО пропорциональна степени перекрывания АО.

При заполнении связывающих орбиталей снижается энергия молекулы и образуется прочная связь.

Разрыхляющие МО имеют пониженную электронную плотность, они не связывают атомы в молекулу и называются антисвязывающими МО.

Порядок и энергия связи.

Порядок связи n = (Nсв–Nр)/2, где Nсв – число электронов на связывающих МО, Nр - на разрыхляющих, 2 – число взаимодействующих атомов. Порядок связи может быть не только целым, но и дробным: n= 1, 3/2, и т.д.

Энергия связывающих МО ниже энергии разрыхляющих МО. Энергия связи возрастает при переходе от комбинаций АО первой оболочки к комбинациям АО второй и других оболочек с более высокими главными квантовыми числами. Энергия МО, образуемых из s-АО, ниже энергии МО, образуемых из р-АО или d-АО.

E

 

                                             
     
           
     
 
       
 
 
 
   
       
 
 
   

 

 


 

 


Диаграмма энергетических уровней АО и МО молекулы О2.

Порядок связи n = (6-2)/2 = 2. На разрыхляющей р-орбитали имеются два неспаренных электрона, поэтому молекула парамагнитна.

Сравнение МВС и ММО

Оба метода имеют общие положения:

1) они дают одинаковое распределение электронной плотности в соединениях;

2) связь образуется за счет перекрывания АО, причем прочность связи растет с увеличением электронной плотности в области связи;

3) в зависимости от типа АО образуются s-, p- и δ- связи.

Метод ММО более универсален, может объяснить характер связей у более широкого круга соединений, более приспособлен для машинных расчетов, однако он более сложен, менее нагляден и более формален.

 

Межмолекулярные связи

К основным видам межмолекулярного взаимодействия относят вандерваальсовы силы, водородные связи и донорно-акцепторные взаимодействия.

Вандерваальсовы силыобуславливают притяжение межу молекулами и включают в себя три составлющие: диполь- дипольное взаимодействия, индукционное и дисперсионное взаимодействия.

 

 

1. Диполь- дипольное взаимодействие происходит за счет ориентации диполей:

2. Индукционное взаимодействие. При воздействии диполей на неполярные молекулы возникают наведенные диполи:

3. Дисперсионное притяжение возникает за счет возникновения мгновенных диполей и их суммирования:

               
   
     
       
 
 


Энергия вандерваальсовых взаимодействий невелика и выражается уравнением: , где a и b - константы, lB - расстояние между молекулами, Ев - энергия.

Водородная связь- это химическая связь, образованная положительно поляризованным водородом, химически связанным в одной молекуле, и отрицательно поляризованным атомом фтора, кислорода и азота (реже хлора, серы и др.), принадлежащих другой молекуле. Водородная связь может быть внутримолекулярной, если она образуется между двумя группами одной и той же молекулы, и межмолекулярной, если она образуется между разными молекулами (А-Н + В-К = А-Н...В-К).

Энергия и длина водородной связи.Энергия возрастает с увеличением электроотрицательности (ЭО) и уменьшением размеров атомов. Водородная связь более прочная, чем вандерваальсово взаимодействие, но менее прочная, чем ковалентная связь. Аналогичную зависимость имеет и длина связи.

Н 0,036 О Н 0,177 О

О + Н Н = О......Н Н

Н Н

 

F–H + F- = [ F–H…H ]

0.092 0.126

 

Водородные связи очень распространены, так как многие соединения содержат ковалентные полярные связи Н-О и Н-N, например, вода, кристаллогидраты, белки. Многие физические свойства веществ с водородной связью выпадают из общего хода их изменения в ряду атомов. Так, летучесть ассоциированных аномальна мала, а вязкость, диэлектрическая постоянная, теплота парообразования, температура кипения аномально повышенные. В ряду H2O – Н2S - Н2Se – H2Te свойства воды резко отличаются от свойств других веществ. Если бы вода не обладала водородными связями, она имела бы температуру плавления не 0°С, а (-100°С), и температуру кипения не 100°С, а -80°С. Водородная связь влияет и на химические свойства веществ. Так, HF - слабая кислота, тогда как НС1 - сильная. Причина в том, что HF образует с помощью водородной связи дифторид-ионы и другие более сложные ассоциаты.

Комплексные соединения

Комплексные соединения образуются за счет донорно-акцепторных связей (по другому они называются также координационными соединениями). Так, атом азота в аммиаке (донор) отдает на связь пару электронов, а атом бора (акцептор) -вакантную орбиталь. В результате образуется ковалентная связь:

H F H F

׀ ׀ ׀ ׀

H-N: + B-F = H-N-B-F

׀ ׀ ׀ ׀

H F H F

 

По координационной теории Вернера комплексные соединения состоят из двух сфер: внешней и внутренней, например: [Сu(NН3)4]SО4; SО42- - внешняя сфера, [Сu(NН3)4]+2 - внутренняя, которая включает центральный ион - комплексообразователь Сu2+ и лиганды NНз. Лигандами могут быть молекулы аммиака или гидроксил-анионы: [Zn(ОН)4]2-. Число лигандов, координируемых комплексообразователем, называется координационным числом, в данных примерах оно равно 4. В зависимости от заряда различают анионные [РF6]- , [Zn(СN)4]2- и катионные [Сu(NН3)4]2+, [Ni(Н2О)4]2+. Заряд комплекса равен алгебраической сумме заряда центрального иона и заряда лигандов.



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.