Точность. Точность и погрешность. Причины появления погрешностей. Виды точности, используемые в машиностроении.
Точность - это степень приближения истинного значения параметра, процесса, предмета к его заданному значению.
Термин "погрешность" используется для количественной оценки точности. Погрешность - разность между приближенным значением некоторой величины и ее точным значением.
Любая деталь, даже простейшая, состоит из нескольких элементов. Так, цилиндрический валик состоит из элемента в виде цилиндрической поверхности и двух элементов в виде плоскостей, требования к точности, у которых разные. В машиностроении нормируются требования к точности элементов детали, но иногда и всего механизма.
Изготовление абсолютно точного элемента детали невозможно, да и не нужно:
а) в зависимости от назначения элемента детали требования к его точности должны быть разные;
б) невозможно изготовить абсолютно точно элемент детали, даже самый простой;
в) чем точнее требуется изготовить элемент детали, тем дороже будет его изготовление;
В отношении элементов деталей в машиностроении нормирование точности – это установление требований о степени приближения к заданному значению.
Существует четыре нормируемых параметра характеризующих геометрическую точность элементов деталей:
1. Точность размера.
Размер элементов деталей должен находиться в определенных пределах и отличаться от номинального на определенное значение. Нормирование точности в отношении размера заключается в указании отклонений от номинального значения.
2. Точность формы поверхности.
В машиностроении элементы детали должны иметь определенную номинальную геометрическую форму (цилиндр, плоскость, сфера и т.д.). В этом случае точность нормируется, как допускаемое искажение конфигурации по сравнению с идеальной правильной формой. Эти искажения формы должны находиться в определенных заданных пределах. Нормирование точности формы заключается в указании значений, насколько форма может отличаться от идеальной, а иногда нормируется и допустимый вид искажений.
3. Точность расположения поверхностей.
Любая деталь состоит из набора элементов (поверхностей) определенной формы. Эти элементы должны быть расположены одна относительно другой в заданном положении. Сделать это абсолютно точно невозможно, а, следовательно, возникает необходимость нормировать точность, т.е. степень отклонения расположения одной поверхности относительно другой. Например, в цилиндрическом валике торцевые поверхности должны быть расположены перпендикулярно оси цилиндра, но практически так сделать невозможно и поэтому необходимо установить требования к точности этого расположения. При нормировании требуется указать допускаемые значения, насколько одна поверхность может смещаться относительно другой.
4.Точность по шероховатости поверхности.
После любого вида обработки поверхности детали будут иметь неровность. Поэтому возникает необходимость нормировать точность в отношении степени приближения реальной поверхности к идеальной в отношении малых неровностей на этих поверхностях. Раньше требование к высоте поверхностных неровностей называли требование к "чистоте поверхности", а теперь - требование к "шероховатости". Нормировать точность в отношении шероховатости - это значит установить допускаемые значения в основном высоты неровностей на рассматриваемых поверхностях.
Качество измерений характеризуется: точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений. Точность измерительного прибора это - метрологическая характеристика прибора, определяемая погрешностью измерения, в пределах которой можно обеспечить использование данного измерительного прибора.
В метрологии используется понятие "класс точности" прибора или меры. Класс точности средства измерений (ГОСТ 8.401-80) является обобщенной характеристикой средства намерений, определяемой пределами основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерения.
Класс точности характеризует свойства средства измерения, но не является показателем точности выполненных измерений, поскольку при определении погрешности измерения необходимо учитывать погрешности метода, настройки и др.
В зависимости от точности приборы разделяются на классы: первый, второй и т.д. Допускаемые погрешности для разных типов приборов регламентируются государственными стандартами. Точность - это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Количественная оценка точности - обратная величина модуля относительной погрешности. Например, если погрешность измерений равна 10 в степени минус 6, то точность равна 10 в степени плюс 6.
Точность измерения зависит от погрешностей, возникающих в процессе их проведения.
- Абсолютная погрешность измерения - разность между значением величины, полученным при измерении, и ее истинным значением, выражаемая в единицах измеряемой величины.
- Относительная погрешность измерения - отношение абсолютной погрешности, измерения к истинному значению измеряемой величины.
- Систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или изменяющаяся по определенному закону при повторных измерениях одной и той же величины. Систематическая погрешность может быть исключена с помощью поправки.
- Случайная погрешность - составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.
- Грубая погрешность измерения - погрешность, значение которой существенно выше ожидаемой.
В зависимости от последовательности причины возникновения различают следующие виды погрешностей.
- Инструментальная погрешность - составляющая погрешности измерения, зависящая от погрешностей применяемых средств. Эти погрешности определяются качеством изготовлении самих измерительных приборов.
- Погрешность метода измерения - составляющая погрешности измерения, вызванная несовершенством метода измерений.
- Погрешность настройки - составляющая погрешности измерения, возникающая из-за несовершенства осуществления процесса настройки.
- Погрешность отсчёта - составляющая погрешности измерения, вызванная недостаточно точным считыванием показаний средств измерений. Погрешность возникает из-за видимого изменения относительных положений отметок шкалы вследствие перемещения глаза наблюдателя - погрешность параллакса.
- Погрешность поверки - составляющая погрешности измерений, являющаяся следствием несовершенства поверки средств измерений. Погрешности от измерительного усилия действуют в случае контактных измерительных приборов. При оценке влияния измерительного усилия на погрешность измерения, необходимо выделить упругие деформации установочного узла и деформации в зоне контакта измерительного наконечника с деталью.
- Влияющая физическая величина - физическая величина, не измеряемая данным средством, но оказывающая влияние на результаты измеряемой величины, например: температура и давление окружающей среды; относительная влажность и др. отличные от нормальных значений.
- Погрешность средства измерения, возникающая при использовании его в нормальных условиях, когда влияющие величины находятся в пределах нормальной области значений, называют основной.
- Если значение влияющей величины выходит за пределы нормальной области значений, появляется дополнительная погрешность.
Нормальные условия применения средств измерений - условия их применения, при которых влияющие величины имеют, нормальные значения пли находятся в пределах нормальной (рабочей) области значений. Нормальные условия выполнения линейных и угловых измерений и поверки регламентированы соответственно ГОСТ 8.050-73 и ГОСТ 8.395-80.
Нормальная температура при проведении измерений равна 20 °C (293 K), при этом рабочая область температур составляет 20 °C ± 1°.
Температурные погрешности вызываются температурными деформациями. Они возникают из-за разности температур объекта измерения и средства измерения. Существуют два основных источника, обуславливающих погрешность от температурных деформаций: отклонение температуры воздуха от 20 °C и кратковременные колебания температуры воздуха в процессе измерения.
Субъективные погрешности - погрешности, зависящие от оператора. Возможны четыре вида субъективных погрешностей: погрешность отсчитывания; погрешность присутствия (проявляется в виде влияния теплоизлучения оператора на температуру окружающей среды, а тем самым и на измерительное средство); погрешность действия (вносится оператором при настройке прибора); профессиональные погрешности (связаны с квалификацией оператора, с отношением его к процессу измерения).
- Результат наблюдения - значение величины, полученное при отдельном наблюдении.
- Результат измерения - значение величины, найденное в процессе измерения, после обработки результатов наблюдения.
- Стабильность средства измерений - качественная характеристика средства измерений, отражающая неизменность во времени его метрологических свойств.
В качестве количественной оценки стабильности служит нестабильность средства измерений или вариация его показаний. Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ с необходимой достоверностью.
Правильность измерений - это качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|