Сделай Сам Свою Работу на 5

Температурные диапазоны выкипания нефтепродуктов.





Рис. 1.2. Виды давлений

 

Для бензинов при температуре t = 38 °С давление насыщенных паров должно быть не более 0,067 МПа (летний бензин) и не более 0,093 МПа (зимний). ГОСТ Р 51105 – 97 разделяет бензины на 5 групп по величине давления насыщенных паров (табл. 1.2).

Таблица 1.2 – Давление насыщенных паров бензинов

Показатель Классы
Давление насыщенных паров, кПа 35 – 70 45 – 80 55 – 90 60 – 95 80 – 100

При давлении насыщенных паров устанавливается равновесие между паром и жидкостью, а концентрация паров топлива в воздухе становится максимальной.

Давление насыщенных паров существенно зависит от температуры. В таблице 1.3 показана зависимость давления насыщенных паров от температуры для бензина Аи-80 (760 мм рт. ст. = 1∙10 5 Н/м2 =100 кПа).

 

Таблица 1.3 – Зависимость давления насыщенных паров от температуры

Температура, оС - 40 - 30 - 20 - 10
Давление насыщенных паров, мм рт. ст.

 

Прибор для определения давления насыщенных паров топлива (рис. 1.3) состоит из топливной 1 и воздушной 2 металлических камер цилиндрической формы, соединенных между собой резьбой. Воздушная камера, предназначенная для паровой фазы, соединена при помощи резиновой трубки и пружинного зажима (крана) 5 с манометром-вакуумметром 6. При проведении опытов прибор помещается в водяную баню 5, соединенную двумя шлангами 7 с термостатом 8. Заданная температура воды поддерживается термостатом и контролируется по ртутному термометру 4, погруженному в баню до отметки 38 °С, с пределами измерений от 0 до 50 °С и ценой деления шкалы 0,1 градуса [22]. На позиции 9 показана схема заполнения топливной камеры.



Так как давление насыщенных паров зависит от температуры и состояния жидкой и паровой фаз, ГОСТ 1756–52 предусматривает определение этой величины при температуре 38 °С и соотношение фаз 1:4 (жидкость – газ).

Перед началом опыта сосуд рассоединяют, шланг должен быть зажат зажимом. В топливную камеру заливают бензин и охлаждают его до температуры0 °С.Затем соединяют топливную камеру с воздушной. Собранный сосуд поворачивают и сильно встряхивают несколько раз. Приводят сосуд в нормальное положение, опускают его в баню с температурой t = 38 °С. После погружения сосуда в баню открывают зажим и через 5 мин. определяют давление или разрежение по показанию манометра-вакуумметра.



Указанные выше операции повторяют до тех пор, пока значение давления по манометру не стабилизируется. При стабилизации давления достигается термодинамическое равновесие, когда жидкость (бензин) уже не испаряется, а газ (пар) не конденсируется. Стабилизированное давление и есть давление насыщенных паров. При снижении давления жидкие углеводородные топлива могут переходить в газообразное состояние.

 
 

Рис. 1.3. Схема прибора для определения давления насыщенных паров: 1 – топливная камера; 2 – воздушная камера; 3 – водяная баня; 4 – термостат; 5 – пружинный зажим; 6 – манометр; 7 – шланги; 8 – термостат; 9 – схема заполнения топливной камеры.

Следует помнить, что если манометр показывает избыточное давление, например, плюс 0,1∙105 Па, то абсолютное давление будет равно 1,1∙105. Если вакуумметр показывает установившееся разрежение минус 0,2∙10 5 Па, то абсолютное давление равно 0,8∙105 Па или 80 кПа.

В соответствии с ГОСТ 1756–2000 (ISO – 3007–99) «Нефтепродукты, определение давления насыщенных паров» давление насыщенных паров определяют с использованием водяной лабораторной бани типа ПЭ–700 и набора бомб ПЭ–7100 с комплектами манометров марки МТИ–1218.

На рис. 1.4 показан современный прибор для определения давления насыщенных паров. Прибор состоит из манометра с ручкой, которая служит для поворота и его встряхивания, воздушной и топливных камер. В процессе определения давления насыщенных паров прибор находится в водяной бане, в которой поддерживается постоянная температура.



Вязкость– способность жидкости оказывать сопротивление при относительном движении её слоёв. Согласно закону Ньютона сила внутреннего трения между слоями жидкости определяется выражением:

где – коэффициент динамической вязкости, (Н·с/м2 = Па·с);

S – площадь соприкасающихся слоев, м2;

– градиент скорости, характеризующий относительное изменение скорости между отдельными слоями жидкости, 1/с.

Рис. 1.4. Бомба типа ПЭ-7100 для

определения давления насыщенных паров

 

Анализ формулы показывает, что коэффициент динамической вязкости выражает силу внутреннего трения, приходящуюся на единицу площади соприкасающихся слоев при градиенте скорости, равном единице.

Кинематическая вязкость: , м2/с. Для воды: 1·10-6, м2/с. Вязкость измеряют в стоксах или сантистоксах (1Ст = 1см2/с; 1сСт = 1 мм2/с). Эталоном кинематической вязкости в 1 cСт является дистиллированная вода при 20 °С. Вязкость любой жидкости можно определить при помощи капиллярного вискозиметра (см. рис. 1.5). Он представляет собой U-образную прозрачную трубку с капилляром, над которым расположены две шарообразных емкости. В начале и конце нижней емкости расположены метки М1 и М2, по которым определяют время в секундах перетекания жидкости. Например, время Δτ = 10 с, а постоянная прибора С = 0,1 мм22. Кинематическую вязкость в сСт (мм2/с) находят по формуле: ν=С·Δτ = 10·0,1 = 1 мм2/с или 1 сСт.

Определив кинематическую вязкость, м2/с, можно оценить динамическую вязкость, Па∙с. Для этого величину кинематической вязкости, м2/c, умножают на плотность жидкости, кг/м3, (μ = υ ×ρ).

Кинематическая вязкость в м2/с применяется для оценки зависимости вязкости жидкости от температуры при определении режимов движения (ламинарное или турбулентное) и расчете потерь энергии при движении жидкости в местных сопротивлениях и по длине.

Для измерения кинематической вязкости в диапазоне 0,3–5000 сСт применяют автоматическое программно-управляемое устройство AKV – 800 при изменении температур от 15 до 100 °С.

Динамическая вязкость, Н∙с/м2 (Па∙с), применяется при расчете сил трения, например, между подшипниками скольжения и шейками коленчатого вала двигателя. В холодное время года вязкость моторного масла резко повышается, силы трения достигают величины, при которой затрудняется вращение коленчатого вала и запуск двигателя. При кинематической вязкости моторного масла более 3000 сСт запуск двигателя затруднен.

Расход жидкости или газа– это количество жидкости (газа), протекающее за единицу времени через данное живое сечение. Различают расход объёмный (м3/с) и массовый (кг/с).

Сжимаемость жидкости (газа) – её способность уменьшаться в объёме при повышении давления. Оценивается коэффициентом объёмного сжатия (м2/Н):

где V – первоначальный объём системы;

V – изменение объёма;

P – изменение давления.

Величина, обратная β,– модуль упругости: К = 1/β. Для воды величина К = 2·10 9 Н/м2, нефтепродуктов – 1,35∙10 9 Н/м2 [37].

В любой замкнутой системе (насос, цилиндр) создаваемое давление определяется по формуле:

Величину давления ΔР ограничивают при помощи перепускных или предохранительных клапанов. Оптимальная величина ΔР выбирается с учётом назначения конструкции исполнительного механизма, например, насоса для перемещения нефтепродукта и создания необходимого давления.

Состав и свойства топлив нефтяного происхождения изменяются в зависимости от температуры и давления. Углеводороды, содержащие от 1 до 4 атомов углерода, при нормальных атмосферных условиях являются газами. При повышении давления молекулы газа укрупняются и переходят в жидкое состояние. Бутан (С4Н10) переходит в жидкое состояние при повышении давления до 0,8 МПа. При понижении давления до величины атмосферного сжиженный бутан переходит в газообразное состояние. Данное свойство газов используется при создании систем питания двигателей, работающих на сжиженном газе (пропан-бутановая смесь газа).

При нормальных атмосферных условиях (Т = 273 К, Р = 760 мм рт. ст.) диаметр молекул газа одинаков и составляет 2∙10-10 м. Массу молекулы малых размеров определить трудно. В 1811 г. итальянский физик Авогадро (1776 – 1856) предположил, что одинаковый объем газа (любого типа) при одинаковом давлении и температуре должен содержать равное количество молекул. Опыты показывают, что 1 грамм атомов Н (водорода) содержит 6∙1023 атомов. В 2 граммах Н2 (молекула) содержится 6∙10 23 молекул. Это специфичное число 6∙10 23 называется числом Авогадро.

Масса молекул газа, кг, содержащая в объеме 22,4 литра при Р = 760 мм рт. ст.
(1∙10 5 Па) и Т = 273 К (t = 0 °С), называется молем.

Моль (молекулярная масса) – количество вещества в определенном объеме.Если количество молекул, равное 6∙1023, компактно упаковать, то их объем составит 22,4 литра. Количество молекул, равных 6∙10 26, займут объем, равный 22,4 м3.

Плотность воздуха при атмосферных условиях равна 1,29 кг/м3. В объеме, равном 22,4 м3, его масса составит 28,9 кг (1,29 ∙22,4 = 28,9).

Один киломольвоздуха равен 28,9 кг.Один мольвоздуха составит 0,0289 кг или 28,9 г. Киломоль – количество газа, масса которого в кг численно равна его молекулярной массе. В воздухе по массе содержится 23 % (0,23) кислорода О2 и 77 % (0,77) азота N2.. Молекулярная масса кислорода 32, азота 28. Молекулярная масса воздуха кг/ кмоль.

Для полного сгорания 1 кг бензина требуется 14,45 кг воздуха или 0,5 киломолей воздуха. В тепловом расчете двигателя внутреннего сгорания требуемое количество воздуха для сгорания 1кг топлива определяют в кг или в киломолях.

При определении потерь нефтепродуктов от испарения и «дыханий» резервуаров необходимо знать плотность испарившихся легких фракций. Для этого определяют молекулярную массу испарившегося нефтепродукта в кг/кмоль. В таблице 1.4 показано изменение молекулярной массы нефтяных фракций в зависимости от температуры начала кипения в оС.

 

Таблица 1.4 – Изменение молекулярной массы нефтепродукта от температуры

Температура, °С 50–100 101–150 151–200 201–250 251–300 301–350 351–400
Молекулярная масса, кг/кмоль

 

Из анализа таблицы 1.4 видно, что легкие фракции с равными интервалами кипения имеют примерно одинаковую молекулярную массу [59]. С повышением температуры кипения фракций увеличивается и разница в молекулярных массах, так как молекулы становятся тяжелее.

Для бензина марки Аи-80 молекулярная масса равна 110 кг/кмоль, для дизельного летнего топлива – 206 кг/кмоль.

Потери нефтепродукта происходят от испарения самых легких фракций, например пентана С5Н12. Его плотность при 20 °С равна 626 кг/м3, температура кипения плюс 36 °С, молекулярная масса 72 кг/кмоль.

Бензин состоит из различных углеводородов от пентана С5Н12, гексана С6Н14 до декана С10Н22. Пентан, гексан, декан переходят в газообразное состояние, соответственно, при температуре 36 °С, 69 °С и 180 °С. В составе бензина может быть бензол (С6Н6), толуол (С7Н8), но их температура кипения достигает 80 °С и 110 °С. При хранении, сливе, наливе потери бензина будут происходить от испарения легких фракций и в первую очередь пентана.

Для определения плотности паров нефтепродукта воспользуемся формулой Клапейрона – Менделеева, которая устанавливает связь между абсолютным давлением Р, Н/м2 (Па), абсолютной температурой Т, К, объемом V, м3, массой газа m, кг и газовой постоянной R, Дж/(кг∙К): .

Один кмоль паров нефтепродукта занимает объем м3. Для кмоля объемом 22,4 м3 уравнение состояния газа имеет вид: ; или . Откуда ,

где – молекулярная масса нефтепродукта, кг/кмоль;

8314 Дж/(кмоль∙К) – универсальная газовая постоянная.

Для примерного нахождения плотности нефтепродукта, который находится в газовом состоянии, используем выражение .

Например, молекулярная масса метана СН4 равна 16 кг/кмоль. Если данный газ сосредоточить при атмосферных условиях в объеме 22,4 м3, то его плотность будет равна 0,714 кг/м3.

В жидкой фазе плотность метана равна 424 кг/м3. Объем метана в жидком состоянии занимает в 600 раз меньше, чем объем в газовой фазе. Это является важным фактором при транспортировке метана и использовании его в качестве топлива.

Свойства топлив и смазочных материалов условно разделяются на три группы: физико-химические, эксплуатационные и экологические.

К физико-химическим относят свойства, определяемые в лабораторных условиях, например, плотность, вязкость, испаряемость, теплота сгорания [22].

К эксплуатационнымотносят свойства, проявляемые непосредственно в двигателе, например, детонационная стойкость бензина, испаряемость, образование нагара, износостойкость деталей.

К экологическимотносят свойства, оказывающие влияние на человека и окружающую среду, например, загрязнение воздуха отработавшими газами, пожарную и взрывоопасность опасность.

 

Контрольные вопросы

1. Что называют плотностью, как она определяется и с какой целью?

2. Что называют удельным весом и удельным объемом?

3. Определение давления, абсолютное, избыточное (манометрическое) и вакуумметрическое давление, единицы величины.

4. Методика определения величины вакуумметрического давления.

5. Что называют давлением насыщенных паров?

6. Кинематическая и динамическая вязкость, единицы величины.

7. Дайте определение объемному и массовому расходам жидкостей или газов?

8. Сжимаемость жидкости или газа.

9. Что называют молем и киломолем?

10. Как определяется плотность жидкого нефтепродукта, находящегося в газовой фазе?

11. Что относят к физико-химическим, эксплуатационным и экологическим свойствам топлив?


НЕФТЬ И ЕЕ ПЕРЕРАБОТКА

 

Нефть– это углеводородное топливо, состоящее в основном из углерода
(83 – 87 %), водорода (12 – 14 %) и малого количества серы, кислорода, азота
(1 – 3 %) [7, 8, 9, 28].

Нефть (от перс. просачиваться) – горючая маслянистая жидкость темного, иногда буро-зеленого цвета, плотностью ρ = 850 – 900 кг/м3, теплотой сгорания 42 – 44 МДж/кг (М – мега (миллион) 106).

Нефть содержит парафины от 4 до 8 %. При содержании в нефти более 6 % парафина появляются сложности с её добычей и транспортировкой. При перекачке парафин отлагается на внутренних стенках трубопровода. Высокопарафиновые нефти перед закачкой в трубу нагревают до 70 – 80 °С (Мангышлакские нефти, Казахстан).

Молекулярная масса нефти 190 – 220 кг/кмоль. Температура самовоспламенения
380 – 530 °С. Температура кипения от 60 до 80 °С. Температура застывания достигает величины от минус 8 до плюс 10 °С.

Кинематическая вязкость, мм2 (сСт), при 20 °С 7 – 20, при 50 °С равняется 3 – 9. Давление насыщенных паров нефти должно быть не более 66650 Па.

По содержанию серы нефти подразделяются на 3 класса [57]:

- малосернистые – до 0,6 %;

- сернистые от 0,61 до 1,8 %;

- высокосернистые более 1,8 %.

Сера в нефти находится в виде сероводорода, меркаптанов и сульфатов. Технология получения топлив из нефти с высоким содержанием серы сложная и требует больших затрат.

Теорию органического происхождения нефти высказал М.В. Ломоносов, который считал, что нефть образовалась в земных глубинах в результате разложения органических остатков растительного и животного происхождения под действием подземного тепла.

За 150 лет (1850 – 2000) из земли было добыто 70·109 т нефти. Объём добытой нефти приводят в баррелях (1 баррель = 158, 9 л).

Впервые в России в 1823 г. в городе Моздоке братьями Дубиниными была создана установка для переработки нефти. Основной продукцией был керосин. Установка имела подогреваемый котел с нефтью и холодильник (ёмкость с водой) для конденсации паров топлива.

В нефти до 99 % содержатся углеводороды разнообразного строения: парафиновые, циклопарафиновые (нафтеновые), ароматические. Низшие газообразные парафины сопутствуют нефти (попутный нефтяной газ), частично растворены в ней. В жидких углеводородах растворены также высшие твёрдые углеводороды.

Нефти, содержащие большое количество парафиновых углеводородов, называют парафиновыми (грозненская, среднеазиатская). Нефти, богатые циклопарафинами, называют нафтеновыми (бакинская). Есть нефть, богатая ароматическими углеводородами (уральская, украинская), ее называют ароматической.

Нефтепродукты–смеси газообразных, жидких и твердых углеводородов различных классов, полученные из нефти и нефтяных газов. К основным группам нефтепродуктов относят: топлива (газы, бензины, лигроины, керосины, соляры, мазуты), масла, консистентные смазки, твердые углеводороды (парафины, церезины), битумы.

Испаряемостьхарактеризуется скоростью перехода топлива из жидкой фазы в газообразную. Нефть не имеет постоянной температуры кипения, так как в ее состав входят различные вещества.

Разделить нефть на отдельные фракции (части), виды топлив (бензин, керосин, газойль, соляр) можно методом прямой перегонки [3, 24]. Нефть нагревают до 380 °С и направляют в разделительную (ректификационную) колонну. Колонна имеет диаметр примерно 2 м и высоту 25 м. В колонне есть разделительные тарелки с отверстиями в виде цилиндров. На цилиндры установлены колпачки с прорезями для прохода паров топлив. Самые легкие фракции – пары бензинов – достигают верхних тарелок и там конденсируются и отводятся в отдельные емкости, более тяжелые оседают на нижних тарелках (рис. 2.1, 2.2).

Самая тяжелая фракция (мазут) снова нагревается и направляется в другую колонну, работающую под разрежением. Давление в колонне снижают до 0,1 атм. для того, чтобы мазут кипел и испарялся при меньшей температуре и разделялся на легкие, средние и тяжелые масла (веретённый, машинный, цилиндровый).

Температурные диапазоны выкипания нефтепродуктов.

Бензин 35 – 190 °С, лигроин 110 – 230 °С, керосин 140 – 300 °С, газойль 236 – 330 °С, соляр 286 – 380 °С, масла 320 – 500 °С. При смешении фракций получают топлива для различных видов техники.

Лигроин и керосин – реактивное топливо для самолётов.

Керосин и газойль – лёгкое дизельное топливо для автомобилей.

Газойль и соляр – дизельное топливо для тракторов.

Соляр – для тепловозов и судовых двигателей.

 

 

Рис. 2.1.Комплексная атмосферно-вакуумная установка переработки нефти: 1 – трубчатая печь; 2 и 5 – ректификационные колонны; 3 – холодильник;4 – конденсатор-газоотделитель; 6 – теплообменник; 7 – насос;8 – испарительная колонна

 

 

 

Рис. 2.2.Схема ректификационной колонны и её принцип действия: 1 – приспособление для подачи водяного пара; 2 – труба (ввод паров нефти и её неиспарившейся части); 3 – приспособление для ввода орошения; 4 – труба для отвода лёгкокипящих фракций с испарившимся оросителем; 5 – металлические тарелки; 6 – отверстия в тарелках; 7 – колпачки с прорезями; 8 – сливная трубка

 

При прямой перегонке нефти среднего состава можно получить 25 % бензиновых фракций, 10 % керосиновых, 35 % дизельных, 20 % базового масла и около 10 % мазута.

Испаряемость бензина– это одно из главных его качеств. Жидкое топливо горит только тогда, когда оно преобразовано в газообразное состояние. Для оценки испаряемости выполняют фракционную (фракция – часть) разгонку и определяют температуру, при которой испаряются 10, 50 и 90 % топлива по объему (t10 %, t50 %, t90 %.).

В таблице 2.1 приведен фракционный состав бензинов, которые согласно их испаряемости разделены на 5 классов (ГОСТ Р. 51105–97).

 

Таблица 2.1 – Испаряемость бензинов

Показатели Классы
Фракционный состав: t10 % t50 % t90 %

 

Бензин, испаряемость которого соответствует первому классу, рекомендуется для южных районов России. Второму и третьему классу – для центральных районов, четвертому – для северных, пятому – для крайнего севера и Арктики.

На рис. 2.3 представлены графики разгонки бензина и дизельного топлива (ДТ).

По величине температуры, при которой испаряется 10 % топлива (t10 %), определяют пусковые качества бензина. При пуске двигателя в первую очередь воспламеняются от искры легкие фракции топлива.

По значению температуры, при которой испаряется 50 % топлива (t50 %), определяют качествопротекания рабочего процесса двигателя, а также время его прогрева, динамику разгона автомобиля.

По величине температуры t90 % оценивают количество тяжелых углеводородов. В случае их неполного сгорания, они способствуют образованию нагара и разжижению моторного масла.

Точки 1 и 6 характеризуют начало кипения или перехода из жидкой фазы бензина и ДТ в газообразную фазу. По точкам 2 и 7 оценивают пусковые качества бензина и ДТ. Точка 3 характеризует качество бензина (скорость прогрева двигателя, его динамику разгона). По точкам 4, 5 и 8 оценивают наличие в топливе тяжелых фракций [22].

 
 

Рис. 2.3. Графики разгонки бензина и дизельного топлива

 

Основу любого органического вещества составляет углеродный скелет.
Он может быть в виде цепи (разветвленной или неразветвленной) или кольца (циклический скелет). К углеродному скелету присоединяются атомы водорода, образуя углеводородную молекулу [24, 58].

Углеводороды, входящие в состав нефти, относят к парафиновым, нафтеновым и ароматическим.

Общая формула углеводородов парафинового ряда (алканы) имеет вид СnH2n + 2. Они представлены в нефти большим разнообразием: от газообразных (СН4 – метан, С2Н6 – этан), жидких (С8Н18 – октан) до высокомолекулярных твердых парафинов включительно (С18Н38 – актодекан). Газообразные содержат от 1 до 4 атомов углерода, они обладают высокой детонационной стойкостью. Соединения, содержащие от 5 до 16 атомов углерода – жидкие вещества, после гексадекана (С16Н34) – твердые вещества.

Нафтеновые углеводороды (цикланы) имеют формулу Сn H2n и представлены в виде кольца с пятью атомами углерода С5 Н10 (циклопентан) и с шестью атомами углерода (С6Н12 циклогексан). Циклическое строение напоминает вид «круговой обороны», а молекулы данного типа обладают высокой детонационной стойкостью, являются желательными для бензинов и зимних сортов дизельных топлив.

Ароматические углеводороды (арены) имеют формулу СnН2n-6, к ним относят бензол С6Н6 в виде кольца (шестигранник) с тремя одинарными связями, чередующимися двойными. К ароматическим углеводородам относят толуол C7H8, бутилбензол С10Н14. Они обладают высокой детонационной стойкостью, рекомендуются для топлив бензиновых двигателей.

В процессе прямой перегонки нефти получается 15 – 25 % бензина с низким октановым числом (ОЧ ≈ 60). Для повышения ОЧ применяют: современные технологии переработки нефти (крекинг-процесс, риформинг), высокооктановые добавки и присадки. В процессе крекинга крупные молекулы расщепляются на мелкие, при этом повышается ОЧ. Крекинг происходит при давлении Р = 2 – 5 МПа и температуре t = 450 – 500 0С. Выход высокооктанового бензина составляет примерно 50 %.

Процесс крекинга протекает по следующей схеме.

Например, из гексадекана (С16Н34) образуется октан (С8Н18), из него бутан (С4Н10) и далее этилен (С2Н4).

 
 

 


В процессе переработки нефти применяют риформинг (изменяется структура молекулы). Например, цепочное строение молекулы преобразуется в кольцевое.

Процесс расщепления молекул тяжёлых углеводородов называют крекингом. Крекинг осуществляют путём нагрева обрабатываемого сырья до определённой температуры без доступа воздуха, без катализатора (термический крекинг)или в присутствии катализатора (каталитический крекинг). Крекинг позволил увеличить выход бензиновых фракций из нефти до 50 – 60 % против 20 – 25 %, получаемых прямой перегонкой.

Термический крекинг происходит при температуре 470 – 540 °С и давлении 2 – 5 МПа. Вместе с расщеплением углеводородов при термическом крекинге протекают процессы синтеза и в результате создаются высокомолекулярные соединения, а также появляются отсутствующие в природной нефти химически неустойчивые непредельные углеводороды. Эти два фактора являются основным недостатком термического крекинга и причиной замены его другими процессами переработки нефти.

К таким процессам относится каталитический крекинг, который протекает при тех же температурах, что и термический крекинг, но при давлении, близком к атмосферному, и в присутствии катализатора. В качестве катализатора наибольшее распространение получили твёрдые алюмосиликатные катализаторы, в состав которых входят окись кремния и окись алюминия. Основной реакцией каталитического крекинга также является расщепление сложных и больших молекул на более лёгкие с меньшим числом атомов углерода.

Каталитический крекинг осуществляют по различным схемам: с неподвижным слоем катализатора, подвижным сферическим катализатором и с пылевидным, или микросферическим, катализатором.

Гидрокрекинг(деструктивная гидрогенизация) – разновидность каталитического крекинга, проводимого в атмосфере водорода при давлении 20 – 30 МПа и температуре 470 – 500 °С. В этом процессе образующиеся непредельные углеводороды гидрируются и превращаются в предельные. Кроме того, имеющиеся в сырье сернистые и кислородные соединения, расщепляясь, реагируют с водородом с образованием сероводорода и воды. Сероводород отмывается слабощелочной водой. В результате можно получать высококачественное топливо из нефтяных остатков, углеводородных смол и других веществ.

В промышленных условиях используют и некоторые другие термические процессы переработки. Например, при нагревании нефтяных остатков до 550 °С при атмосферном давлении происходит образование кокса и получаются жидкие углеводороды, которые можно использовать в качестве топлив. Далее нагревание нефти до температуры
670 – 800 °С (пиролиз) ведёт к значительному образованию газообразных углеводородов (этилен, пропилен), из которых путём нефтехимического синтеза получают полиэтилен, полипропилен. В процессе пиролиза образуются и жидкие углеводороды, в основном ароматические.

Наиболее перспективным является каталитический риформинг. Сущность его заключается в ароматизации бензиновых фракций в результате преобразования нафтеновых и парафиновых углеводородов в ароматические. Нафтеновые углеводороды теряют атом водорода и превращаются в ароматические (реакция ароматизации), парафиновые в результате реакции изомеризации (циклизации) также образуют ароматические углеводороды, отщепляя водород. Одновременно тяжёлые углеводороды расщепляются на более мелкие. Образующиеся при этом непредельные углеводороды гидрируются.

Основным катализатором является алюмоплатина – платины 0,1 – 1,0 %. Этот катализатор позволяет осуществлять реформирование при температуре 460 – 510 °С и давлении 4,0 МПа без регенерации в течение нескольких месяцев. Процесс называется платформинг.

Сырьё (бензиновая фракция прямой перегонки) нагревается в теплообменниках и нагревательной печи до 380 – 420 °С и поступает в реактор, где под давлением 3,5 МПа и при воздействии алюмокобальтомолибденового катализатора подвергается гидроочистке. Очищенное сырье после освобождения от сероводорода, углеводородных газов и воды нагревается в печи до 500…520 °С и поступает в реакторы, где под давлением выше 4,0 МПа происходит его реформирование.

Вид топлива зависит от количества углерода в молекуле. Если углерода в молекуле до 4 – это газ, от 4 до 16 – жидкость, более 16 – масла, парафины, твёрдые вещества.

Фракции бензинов выкипают при температуре от 40 до 190 °С и содержат углеводороды от С5Н12 до С11Н24.

На рис. 2.4 показан крекинг-процесс нефти и изменение от температуры ее составляющих (парафиновых 1, нафтеновых 2, ароматических 3).

 

 

Рис. 2.4. Крекинг-процесс нефти: 1 – парафиновые углеводороды; 2 – нафтеновые; 3 – ароматические

 

При повышении температуры от 100 до 500 0С (крекинг-процесс для грозненской нефти) парафиновые углеводороды расщепляются и их количество с 60 % уменьшается до 18 %. Нафтеновые углеводороды с 35 % увеличиваются до 70 %, а ароматические с 5 % увеличиваются до 12 %.

На этом эффекте основано получение высокооктановых бензинов. При высокой температуре осколки парафиновых и других углеводородов приобретают кольцевое строение.

Парафиновые углеводороды (30 – 50 %) имеют высокую самовоспламеняемость, из них готовят дизельные топлива. Нафтеновые углеводороды (25 – 75 %) и ароматические (5 – 20 %) обладают детонационной стойкостью (для бензинов).

Примеси нефти. Среди примесей наибольшее влияние на качество топливосмазочных материалов оказывают сернистые и кислородные соединения. Эти соединения оказывают многостороннее влияние на эксплуатационные характеристики двигателей и механизмов и, прежде всего, на их коррозионный износ. Для удаления примесей полуфабрикаты топлив и масел подвергают очистке.

Очистка серной кислотой. Применяется для удаления непредельных углеводородов, асфальтосмолистых веществ, азотистых и сернистых соединений, нафтеновых кислот. Очистке 96 – 98 % раствором серной кислоты подвергают масла. Различают кислотно-щелочную и кислотно-контактную очистки. При кислотно-щелочной очистке после реакции с кислотой полуфабрикат нейтрализуют натриевой щелочью с промывкой водой и просушиванием паром. Осадок в виде смолистой массы (кислого гудрона) удаляется.

Щелочная очистка (очистка натриевой щелочью). Применяется для удаления из нефтяных дистиллятов кислородных соединений (нефтяных кислот, фенолов), сернистых соединений (сероводорода, меркаптанов, серы) и для нейтрализации серной кислоты и продуктов её взаимодействия с углеводородами (сульфокислот, эфиров серной кислоты), остающихся в нефтепродукте после его сернокислотной очистки.

Образующиеся вещества растворяются в воде и удаляются из очищенного продукта вместе с водным раствором щелочи. Очистка щелочью используется при производстве бензинов, дизельных топлив и некоторых видов масел.

Селективная очистка (очистка при помощи растворителей) основана на различной растворяющей способности некоторых веществ в отношении углеводородов различного строения и неуглеводородных примесей. Применяется для очистки масел. Удаляются асфальтосмолистые соединения, полициклические углеводороды, часть сернистых соединений, непредельные углеводороды.

После селективной очистки (фенолом, фурфуролом, крезолом) получают рафинат (очищенное масло) и экстракт (растворитель с извлеченными из масла веществами). После удаления растворителя экстракт идет в качестве добавки в трансмиссионные масла, а рафинат - на приготовление масел.

Депарафинизация. Применяется для удаления углеводородов с высокими температурами застывания, в основном парафинового ряда, так как последние при охлаждении переходят в кристаллическое состояние. Депарафинизации подвергают дизельные топлива и масла.

Один из главных методов депарафинизации - вымораживание, заключающееся в охлаждении полуфабриката до температуры застывания, после чего кристаллы отделяются на фильтрах.

Гидроочистка. Применяется для удаления сернистых, азотистых и кислородных соединений путём восстановления этих соединений водородом при повышенных температурах и давлении в присутствии катализатора в газообразные продукты (сероводород, аммиак) и воду, которые легко удаляются. Гидроочистке подвергают дизельные топлива и моторные масла для удаления серы.

Адсорбционная очистка (контактная очистка, очистка отбеливающими землями). Некоторые высокопористые вещества (адсорбенты) способны удерживать на поверхности нежелательные примеси, содержащиеся в нефтепродуктах. Эта очистка распространена при производстве масел и дизельных топлив. Данным способом удаляют смолы, нафтеновые кислоты, кислородосодержащие соединения, сульфокислоты, остатки минеральной кислоты и селективного растворителя. В качестве адсорбентов используют природные глины, силикагель, активированную окись алюминия.

Все перечисленные выше способы очистки применяют для улучшения качества нефтепродуктов, их эксплуатационных свойств. В зависимости от требования к качеству нефтепродукт подвергают очистке одним способом, или двумя, или многими, применяя их в той или иной последовательности.

В таблице 2.2 приведены основные виды эксплуатационных материалов, используемые в двигателях внутреннего сгорания автомобилей, тракторов и другой технике.

 

Таблица 2.2 – Виды эксплуатационных материалов

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.