|
ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ
Предметы мира находятся друг с другом во взаимосвязи и взаимообусловленности. Поэтому и понятия, отражающие предметы мира, также находятся в определенных отношениях.
Далекие друг от друга по своему содержанию понятия, не имеющие общих признаков, называются несравнимыми (например, «безответственность» и «нитка»; «романс» и «кирпич»), остальные понятия называются сравнимыми.
Сравнимые понятия делятся по объему на совместимые (объемы этих понятий совпадают полностью или частично) и несовместимые (объемы которых не совпадают ни в одном элементе).
Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
Отношения между понятиями изображают с помощью круговых схем (кругов Эйлера3), где каждый круг обозначает объем понятия (рис. 3). Если понятие единичное, то оно также изображается кругом.
Равнозначными (или тождественными) называются понятия, которые различаются по своему содержанию, но объемы которых совпадают, т. е. в них мыслится или одноэлементный класс, или один и тот же класс предметов, состоящий более чем из одного элемента. Примеры равнозначных понятий: 1) «река Волга»; «самая длинная река в Европе»; 2) «автор рассказа «Человек в футляре»; «автор комедии «Вишневый сад»; 3) «равносторонний прямоугольник»; «квадрат»; «равноугольный ромб». Объемы тождественных понятий изображаются кругами, полностью совпадающими.
Понятия, объемы которых частично совпадают, т. е. содержат общие элементы, находятся в отношении перекрещивания. Примерами их являются следующие пары: «колхозник» и «ор-деноносец»; «школьник» и «филателист»; «спортсмен» и «студент». Они изображаются пересекающимися кругами (см. рис. 3). В заштрихованной части двух кругов мыслятся студенты, являющиеся спортсменами, или (что одно и то же) спортсмены, являющиеся студентами, в левой части круга А мыслятся студенты, не являющиеся спортсменами. В правой части круга В мыслятся спортсмены, которые не являются студентами.
Отношение подчинения (субординации) характеризуется тем, что объем одного понятия целиком включается (входит) в объем другого понятия, но не исчерпывает его. Это отношение вида и рода; А — подчиняющее понятие («млекопитающее»), В — подчиненное понятие («кошка»).
Типы несовместимости: соподчинение, противоположность, противоречие
Соподчинение (координация) — это отношение между объемами двух или нескольких понятий, исключающих друг друга, но принадлежащих некоторому, более общему родовому понятию (например, «ель», «береза», «сосна» принадлежат объему понятия «дерево»). Они изображаются отдельными неперекрещивающимися кругами внутри более обширного круга. Это виды одного я того же рода.
В отношении противоположности (контрарности) находятся объемы таких двух понятий, которые являются видами одного и того же рода, и притом одно из них содержит какие-то признаки, а другое эти признаки не только отрицает, но и заменяет их другими, исключающими (т. е. противоположными признаками). Слова, выражающие противоположные понятия, являются антонимами. Антонимы широко используются в обучении. Примеры противоположных понятий: «храбрость» — «трусость»; «белая краска» — «черная краска». Объемы последних двух понятий разделены объемом некоторого третьего понятия, куда, например, входит «зеленая краска».
В отношении противоречия (контрадикторности) находятся такие два понятия, которые являются видами одного и того же рода, и при этом одно понятие указывает на некоторые признаки, а другое эти признаки отрицает, исключает, не заменяя их никакими другими признаками. Если одно понятие обозначить А (например, «высокий дом»), то другое понятие, находящееся с ним в отношении противоречия, следует обозначить не-А (т. е. «невысокий дом»). Круг Эйлера, выражающий объем таких понятий, делится на две части (А и не-А) и между ними не существует третьего понятия. Например, бумага может быть либо белой, либо небелой; человек бывает честным или нечестным; животное — млекопитающим или немлекопитающим и т. д. Понятие А является положительным, а понятие не-А — отрицательным.
Понятия А и не-А также являются антонимами.
Примеры. Определить отношения между следующими понятиями; изобразить эти отношения кругами Эйлера (рис. 4, 5): 1. Дом, недостроенный дом, 2. Спортсмен, рабочий,
каменный дом, строение. орденоносец.
ОПРЕДЕЛЕНИЕ ПОНЯТИЙ
Определение (или дефиниция) понятия есть логическая операция, которая раскрывает содержание понятия либо устанавливает значение термина.
С помощью определения понятий мы в явной форме указываем на сущность отражаемых в понятии предметов, раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других предметов. Так, например, давая определение понятия «трапеция», мы отличаем его от других четырехугольников, например от прямоугольника или ромба. «Трапеция — четырехугольник, у которого две стороны параллельны, а две другие — не параллельны» (1). Приведем еще несколько определений понятий, взятых из школьных учебников, которые принадлежат к двум различным видам определений. «Вещества, растворы которых проводят электрический ток, называются электролитами» (2). «Флорой называют видовой состав растений, произрастающих на той или иной территории» (3). «Естественный отбор — процесс выживания наиболее приспособленных особей, который ведет к преимущественному повышению или понижению численности одних особей в популяции по сравнению с другими» (4).
В явном определении понятие, содержание которого надо раскрыть, называется определяемым понятием [definiendum (дефиниендум), сокращенно Dfd ], а то понятие, посредством которого оно определяется, называется определяющим понятием [definience (дефиниенс), сокращенно — Dfn ].
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|