Сделай Сам Свою Работу на 5

ОТНОШЕНИЯ МЕЖДУ ПОНЯТИЯМИ





 

Предметы мира находятся друг с другом во взаимосвязи и взаимообусловленности. Поэтому и понятия, отражающие предметы мира, также находятся в определенных отношениях.

Далекие друг от друга по своему содержанию понятия, не име­ющие общих признаков, называются несравнимыми (например, «безответственность» и «нитка»; «романс» и «кирпич»), оста­льные понятия называются сравнимыми.

 

Сравнимые понятия делятся по объему на совместимые (объ­емы этих понятий совпадают полностью или частично) и несов­местимые (объемы которых не совпадают ни в одном элементе).

Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)

Отношения между понятиями изображают с помощью круго­вых схем (кругов Эйлера3), где каждый круг обозначает объем понятия (рис. 3). Если понятие единичное, то оно также изоб­ражается кругом.

Равнозначными (или тождественными) называются понятия, которые различаются по своему содержанию, но объемы кото­рых совпадают, т. е. в них мыслится или одноэлементный класс, или один и тот же класс предметов, состоящий более чем из одного элемента. Примеры равнозначных понятий: 1) «река Вол­га»; «самая длинная река в Европе»; 2) «автор рассказа «Человек в футляре»; «автор комедии «Вишневый сад»; 3) «равносторон­ний прямоугольник»; «квадрат»; «равноугольный ромб». Объемы тождественных понятий изображаются кругами, полностью со­впадающими.



Понятия, объемы которых частично совпадают, т. е. содер­жат общие элементы, находятся в отношении перекрещивания. Примерами их являются следующие пары: «колхозник» и «ор-деноносец»; «школьник» и «филателист»; «спортсмен» и «сту­дент». Они изображаются пересекающимися кругами (см. рис. 3). В заштрихованной части двух кругов мыслятся студенты, явля­ющиеся спортсменами, или (что одно и то же) спортсмены, являющиеся студентами, в левой части круга А мыслятся студен­ты, не являющиеся спортсменами. В правой части круга В мыс­лятся спортсмены, которые не являются студентами.

Отношение подчинения (субординации) характеризуется тем, что объем одного понятия целиком включается (входит) в объем другого понятия, но не исчерпывает его. Это отношение вида и рода; А — подчиняющее понятие («млекопитающее»), В — подчиненное понятие («кошка»).



 

Типы несовместимости: соподчинение, противоположность, противоречие

Соподчинение (координация) — это отношение между объема­ми двух или нескольких понятий, исключающих друг друга, но принадлежащих некоторому, более общему родовому понятию (например, «ель», «береза», «сосна» принадлежат объему понятия «дерево»). Они изображаются отдельными неперекрещивающимися кругами внутри более обширного круга. Это виды одного я того же рода.

В отношении противоположности (контрарности) находятся объемы таких двух понятий, которые являются видами одного и того же рода, и притом одно из них содержит какие-то призна­ки, а другое эти признаки не только отрицает, но и заменяет их другими, исключающими (т. е. противоположными признака­ми). Слова, выражающие противоположные понятия, являются антонимами. Антонимы широко используются в обучении. При­меры противоположных понятий: «храбрость» — «трусость»; «белая краска» — «черная краска». Объемы последних двух поня­тий разделены объемом некоторого третьего понятия, куда, например, входит «зеленая краска».

В отношении противоречия (контрадикторности) находятся такие два понятия, которые являются видами одного и того же рода, и при этом одно понятие указывает на некоторые признаки, а другое эти признаки отрицает, исключает, не заменяя их ника­кими другими признаками. Если одно понятие обозначить А (на­пример, «высокий дом»), то другое понятие, находящееся с ним в отношении противоречия, следует обозначить не-А (т. е. «невы­сокий дом»). Круг Эйлера, выражающий объем таких понятий, делится на две части и не-А) и между ними не существует третьего понятия. Например, бумага может быть либо белой, либо небелой; человек бывает честным или нечестным; живо­тное — млекопитающим или немлекопитающим и т. д. Понятие А является положительным, а понятие не-А — отрицательным.



Понятия А и не-А также являются антонимами.

Примеры. Определить отношения между следующими поня­тиями; изобразить эти отношения кругами Эйлера (рис. 4, 5): 1. Дом, недостроенный дом, 2. Спортсмен, рабочий,

каменный дом, строение. орденоносец.

 

ОПРЕДЕЛЕНИЕ ПОНЯТИЙ

 

Определение (или дефиниция) понятия есть логическая опера­ция, которая раскрывает содержание понятия либо устанавливает значение термина.

С помощью определения понятий мы в явной форме указыва­ем на сущность отражаемых в понятии предметов, раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других предметов. Так, например, давая определе­ние понятия «трапеция», мы отличаем его от других четыреху­гольников, например от прямоугольника или ромба. «Трапе­ция — четырехугольник, у которого две стороны параллельны, а две другие — не параллельны» (1). Приведем еще несколько определений понятий, взятых из школьных учебников, которые принадлежат к двум различным видам определений. «Вещества, растворы которых проводят электрический ток, называются эле­ктролитами» (2). «Флорой называют видовой состав растений, произрастающих на той или иной территории» (3). «Естествен­ный отбор — процесс выживания наиболее приспособленных особей, который ведет к преимущественному повышению или понижению численности одних особей в популяции по сравнению с другими» (4).

В явном определении понятие, содержание которого надо раскрыть, называется определяемым понятием [definiendum (дефиниендум), сокращенно Dfd ], а то понятие, посредством которого оно определяется, называется определяющим понятием [definience (дефиниенс), сокращенно — Dfn ].

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.