Сделай Сам Свою Работу на 5

Этапы развития ракет и ракетной техники





Оглавление

1.1. Этапы развития ракет и ракетной техники……………………………………..
1.2. Теория тел переменной массы – фундамент космонавтики. Развитие космонавтики и практической ракетной техники……………………………...  
1.3. Образование рынка космических услуг и развитие РКТ на современном этапе……………………………………………………………………………….  
1.3.1. Основные задачи, решаемые ракетно-космической техникой………………..  
1.3.2. Работы, выполняемые на ракетно-космическом комплексе при подготовке ракет-носителей к пуску и на этапе пуска……………………………………...  
1.3.3. Состав ракетно-космического комплекса и полигона для испытаний и штатных запусков ракет-носителей……………………………………………..  
  Перспективы развития средств выведения……………………………………..  
  Литература………...…………………………………………………..………….  

 

 

Глава 1

Введение в ракетно-космическую технику

Этапы развития ракет и ракетной техники

 

История развития ракет восходит к глубокой древности. Появление ракет неразрывно связано с изобретением пороха, продукты сгорания которого создают реактивную силу, способную сообщить ракете сравнительно высокую скорость. В литературе указывается, что рецепт изготовления пороха был известен в Китае, Индии, арабских странах, но где порох появился впервые до настоящего времени неизвестно. Считается, что в Китае ракеты («огненные стрелы») применялись еще в X – XII веках.



Использование ракет в качестве оружия всегда обуславливалось относительно высокими энергетическими возможностями реактивных устройств, что делало ракеты эффективными при боевом применении. Однако постоянное соперничество других видов метания снарядов, как правило, приводило на многих этапах создания ракет к отказу от использования последних. В основном причиной отказа была низкая точность попадания в цель ракетами по сравнению с конкурирующими системами. Это связано с тем, что в неракетных системах сообщение требуемой скорости снаряду, пуле и т. д. производится на коротком участке движения снаряда по направляющей, которую можно достаточно точно навести в цель.



В результате этого сориентировать вектор скорости бросания снаряда, величина которого формируется при движении снаряда в стволе, можно сориентировать более или менее точно, и на него относительно мало влияют внешние условия полета снаряда. Однако эти же условия требуют сообщения снаряду больших ускорений, а, следовательно, и больших нагрузок, вызываемых реакциями, действующими на метательное устройство. Это заставляет изготавливать неракетную метательную систему значительно более тяжелой по сравнению с массой снаряда (в сотни раз).

В ракетной системе сообщение скорости снаряду происходит в основном вне пусковой установки, на сравнительно длинном участке траектории полета. Это приводит к тому, что ускорения снаряда невелики, поэтому невелики и нагрузки на систему метания. Вес ракетной метательной системы становится сравнимым с весом ракеты, и может отличаться всего в несколько раз.

Широкое распространение «огненные стрелы» получили в Индии. Европейцы (англичане) впервые столкнулись с «огненными стрелами» в период колонизации Индии. Изучением их занялся военный инженер полковник Вильям Конгрев. Он вывез ракеты в Англию, усовершенствовал их, и добился принятия ракет на вооружение английской армии. Ракеты достаточно широко и успешно использовались в боевых действиях английской армии. Так в 1807 году во время войны с Наполеоном английский флот при осаде Копенгагена практически полностью уничтожил город с помощью ракет. [1] выпуск 2 стр. 152 рис. 7; стр. 159 рис. 11. Появление ракет на вооружении Англии заставило заняться ими в других странах.



В России ракеты описываются в «Уставе» Анисима Михайлова, написанного им в 1607-1621 г. При Петре I ракеты широко применялись в русской армии. В начале 80-х годов XVII века в Москве было учреждено «Ракетное заведение», которое затем было переведено в Санкт-Петербург. В начале XVIII века в нем была создана сигнальная ракета, которая состояла на вооружении русской армии больше полутора веков. [1] вып. 2, стр. 159 рис 11.

Одним из первых создателей боевых ракет для русской армии был генерал Александр Дмитриевич Засядко (1779 – 1837 г.) Им были созданы удачные рикошетные и зажигательные ракеты, которые использовались в ракетных ротах и батареях русской армии.

В 40-х годах прошлого столетия русский ученый генерал Константинов К. И. разработал научные основы расчета и проектирования пороховых ракет. [1] выпуск 2 стр. 160 рис. 12. Используя его методики были созданы ракеты с дальностью стрельбы до 4-5 км, которые стали эффективным оружием русской армии.

Однако развитие во второй половине XIX века нарезной артиллерии, позволившей получить большую дальность стрельбы и более высокую точность и меньшее рассеивание попадания вытеснило ракеты. Как уже отмечалось , воздействие внешних нагрузок (аэродинамических, вызванных неточностью изготовления снаряда, метательной установки и др.) на снаряд при полете на участке разгона под действием реактивной силы приводят к большим угловым отклонениям вектора скорости снаряда от требуемого значения, а следовательно и к отклонениям параметров движения снаряда по траектории. Эти отклонения значительно превышали аналогичные отклонения артиллерийских орудий, разработанных во второй половине XIX века, точность стрельбы ракетами была много ниже, чем точность попадания снарядов при стрельбе из этих орудий. Это явилось причиной отказа от использования ракет в качестве снарядов для поражения целей.

В ходе развития методов вооруженной борьбы в период бурного развития науки и техники в конце XIX – начале XX веков наметился переход к позиционным войнам, ведение которых требовало огромного напряжения всего экономического и морального потенциала стран – противников и расходования больших людских ресурсов, организации управления хозяйством этих стран, маневра силами и средствами по территории страны.

В ходе таких войн постоянно возрастали требования к возможности поражения объектов противника на значительном удалении от переднего края вооруженной борьбы сражающихся армий. К таким объектам относились центры управления, узлы коммуникаций всех типов, важнейшие центры энергоснабжения, производства промышленной продукции, скопления войск, боевой техники, основные склады различных запасов. Для нанесения морального ущерба населению страны и для сокращения его трудовых ресурсов считалось возможным нанесение ударов по крупным населенным пунктам противника.

Одной из первых попыток создания средств доставки боевого снаряда в глубокий тыл противника (по понятиям того времени) было создание в Германии в ходе первой мировой войны сверхдальнобойного оружия, предназначенного для обстрела целей, расположенных на удалении от орудия на 200-250 км.

Уникальный опыт использования этого орудия показал, что эффективность такой метательной системы крайне низка. Для доставки к цели снаряда весом 7 килограмм потребовалось создать орудие весом 350 тонн, обладающее малой скорострельностью, имеющее очень низкую живучесть в связи с крайне высокой нагрузкой на ствол при выстреле.

Кроме того, круговое отклонение снаряда от точки прицеливания, равное 2 км, было столь велико, что реально мог быть осуществлен обстрел площадных целей типа крупного города, таким был Париж. Это показало, что при подобных параметрах рассеивания повышение эффективности до приемлемого уровня может быть достигнуто только за счет резкого увеличения (в сотни раз) массы боевого заряда. То есть на пути использования для доставки такого заряда к цели ствольных систем добиться успеха было невозможно.

Развитие авиации в первые два десятилетия XX века могло позволить предположить, что использование самолетов решит поставленную задачу. Уже в конце первой мировой войны во всех крупных воюющих странах были созданы бомбардировщики, способные доставлять до тонны и больше бомбовой нагрузки на дальность 300-350 км (Fridrichshafen G-IV, Gotha G-V в Германии), (Handley Page H-12, Handley Page H-15 в Англии), (Илья Муромец в России), (Martin MB в США). Правда, в период первой мировой войны практически не было осуществлено ни одного авиационного налета на глубокие тыловые объекты противников, кроме нескольких бомбовых ударов, совершенных немецкими дирижаблями. Но накопленный опыт применения авиации для атаки наземных войск противника на переднем крае и ближних войсковых тылах, тенденция развития авиации (повышения дальности полета, скорости, грузоподъемности, развитие вооружения самолета) позволили создать теории авиационных войн, основоположники которых доказывали, что в таких войнах практически только силами авиации можно подавить сопротивление противника, нанести непоправимый ущерб экономике противника и деморализовать население. Но авторы этих теорий не учли боевые способности развивающихся средств ПВО, построенных на применении современной истребительной авиации, зенитной артиллерии, средств раннего обнаружения атакующих самолетов противника, средств связи и управления. Развитие ПВО позволяло осуществить маневр даже ограниченными силами, обеспечивая местное противодействие в оборонительных средствах.

Понимание этого привело к тому, что в странах имеющих развитую научно-техническую базу (США, СССР, Германия) возникла идея создания боевых летательных аппаратов-роботов, сочетающих возможности самолетов в достижении удаленных целей, имеющих на борту значительную полезную нагрузку с повышением надежности выполнения задачи при сравнимых затратах материальных средств на создание и производство этих аппаратов, либо за счет массового их применения в относительно дешевом варианте, либо за счет повышения их неуязвимости при полете по таким траекториям и с такой скоростью, что делало недосягаемыми для средств ПВО того времени. Наибольших успехов в реализации этой идеи добились немецкие ученые и инженеры. В значительной степени это объяснялось тем, что в европейских странах – победительницах в первой мировой войне (Англия, Франция, Италия), в США и СССР большое влияние было уделено развитию оправдавшей себя военной авиации. А в Германии Версальский мирный договор запрещал иметь и разрабатывать такую авиацию, и силы ученых были направлены на создание нетрадиционных средств нападения, инструмента подавления тыловых целей, на который не распространялись ограничения мирного договора. Таким инструментом оказались беспилотный крылатый самолет-снаряд V-1 (FZG-76) и баллистическая ракета V-2 (A4).

В Германии, которая в значительной степени сохранила научный и технический потенциал, а в середине 30-х годов получила экономические возможности создания новых систем вооружения удалось создать значительно более мощный и более эффективный, чем в других странах беспилотный баллистический аппарат и спроектировать агрегаты наземного оборудования, организовать его массовое производство, а также производство агрегатов наземного оборудования, произвести испытания всего боевого ракетного комплекса, найти, создать и опробовать организационные и эксплуатационные принципы применения.

Создание беспилотных летательных аппаратов типа самолетов-снарядов V-1 и управляемых баллистических ракет V-2 и использование опыта их эксплуатации и боевого применения резко активизировало работы над аналогичными системами вооруженной борьбы, ведущимися в различных странах мира, особенно в СССР и США.

Именно постановка на борт баллистической ракеты системы управления позволила повысить точность стрельбы ракеты по малоразмерным целям и сделать ее конкурентно-способной по эффективности любой метательной системе.

В Советском Союзе в марте 1946 года на первой послевоенной сессии Верховного Совета СССР в числе других первостепенных задач развития страны называлась задача обеспечения работ по развитию реактивной техники. В 1946 году Постановлением ЦК КПСС и Совета Министров СССР принимается решение о создании новых и развитии существующих научно-исследовательских, опытно-конструкторских и испытательных организаций, деятельность которых должна быть направлена на создание ракет различных классов и назначения, в первую очередь баллистических ракет дальнего действия, наземного оборудования, обеспечивающего их подготовку, запуск, управление полетом и измерения параметров полета.

В начале 50-х годов Советский Союз вышел на передовые рубежи по разработке и применению мощных ракет. Это позволило в 1957 году человечеству сделать первый шаг в практическом освоении Космоса – запустить искусственный спутник Земли, а затем в 1961 и первого космонавта.

При дальнейшем развитии ракетной техники ее создателями решались две задачи:

- совершенствование ракет как средства вооруженной борьбы, повышение их неуязвимости от воздействия противника и увеличение боевого могущества ракет. Решение этой задачи всегда связывалось со стремлением уменьшить габариты ракеты при сохранении или даже увеличении мощности боевого заряда, его эффективности. Это позволяло бы, в свою очередь, либо увеличить защитные свойства шахтных пусковых установок, увеличение размеров которых не допускалось международными соглашениями, либо создать приемлемых размеров подвижные ракетные комплексы разных типов. Как правило, ракеты, удовлетворяющие этим требованиям создаются твердотопливными;

- увеличение возможностей ракет как инструмента для освоения ближнего и дальнего космоса. А на этом пути в начальный период постоянно наблюдались тенденции к увеличению размеров ракет, так как задачи, которые ставились и ставятся перед ракетной техникой, требуют возможности запуска более тяжелых объектов.

На первом этапе этого развития почти все задачи освоения космоса решались путем использования в качестве средства выведения космических объектов боевых ракет и их ступеней. В дальнейшем для решения задач освоения космоса были созданы специальные носители космических средств.

Ракеты среднего и тяжелого класса, которые использовались для этой цели, оснащаются в основном ЖРД. И в настоящее время только очень небольшая часть задач по освоению космоса может решаться путем использования ступеней современных боевых ракет (ракеты двойных технологий). То есть все в большей мере прослеживается определенная дифференциация боевых ракет и ракет – носителей космических объектов.

 

1.2. Теория тел переменной массы – фундамент космонавтики.

Развитие космонавтики и практической ракетной техники.

 

В основе создания теории и практики использования ракет лежат основные положения механики тел переменной массы. Механика тел переменной массы – наука XX столетия. Современная ракетная техника доставляет новые и новые задачи для этого сравнительно недавно возникшего раздела теоретической механики.

Ракеты разных типов, реактивные снаряды, торпеды освоены сейчас промышленностью почти всех стран мира. Все ракеты суть тела, масса которых существенно изменяется во время движения. Вообще случаи движения тел, масса которых изменяется с течением времени, можно видеть во многих явлениях природы. Например масса падающего метеорита, движущегося в атмосфере, убывает вследствие того, что частицы метеорита отрываются вследствие силы сопротивления воздуха или сгорают.

Основной закон динамики точки переменной массы был открыт русским ученым профессором Петербургского политехнического института И. В. Мещерским в 1897 году [2]. Показано, что имеется два фактора, отличающих уравнения движения точки переменной массы от уравнений Ньютона: переменность массы и гипотеза отделения частиц, определяющих добавочную или реактивную силу, создающую движение точки.

Закон движения точки переменной массы гласит: «Для любого момента времени произведение массы излучающего центра на его ускорение равно геометрической сумме равнодействующей приложенных к нему внешних сил и силы реактивной».

d(m×V)/dt = F + R

Полученное И. В. Мещерским основное уравнение движения точки переменной массы дало возможность установить количественные закономерности для различных задач. Одной из существенных гипотез, лежащих в методе Мещерского, является гипотеза близкодействия (контактного воздействия тела и отбрасываемых частиц). Допускается, что в момент отделения частицы от тела происходит явление, аналогичное удару, частица за очень малый промежуток времени получает относительную скорость V2 , и дальнейшее взаимодействие частицы и основного тела прекращается.

Важный вклад в механику переменной массы внес русский ученый К. Э. Циолковский [3]. В 1903 году он опубликовал работу «Исследование мировых пространств реактивными приборами», в которой обстоятельно исследовал ряд интересных случаев прямолинейного движения тел переменной массы (ракет). Простейшая задача, решенная в исследовании Циолковским, касается самого принципа реактивного движения. Изучая движение точки в среде без внешних сил, Циолковский показал, что при достаточно большой скорости отбрасывания частиц и величине отношения начальной массы точки к конечной массе можно получить весьма большие (космические) скорости.

В механике тел переменной массы Циолковскому принадлежит идея изучения таких движений точки переменной массы, когда на некоторых интервалах времени масса точки изменяется непрерывно, а в некоторые моменты времени – скачком. Это позволило построить теорию многоступенчатых ракет.

Космонавтика как наука, а затем и как практическая отрасль, сформировалась в середине XX века. Но этому предшествовала увлекательная история рождения и развития идеи полета в космос, начало которой положила фантазия, и только затем появились первые теоретические работы и эксперименты. Так, первоначально в мечтах человека полет в космические просторы осуществлялся с помощью сказочных средств или сил природы (смерчей, ураганов). Ближе к XX веку для этих целей в описаниях фантастов уже присутствовали технические средства – воздушные шары, сверхмощные пушки и, наконец, ракетные двигатели и собственно ракеты. Не одно поколение молодых романтиков выросло на произведениях Ж. Верна, Г. Уэллса, А. Толстого, А. Казанцева, основой которых было описание космических путешествий.

Все изложенное фантастами будоражило умы ученых. Так К. Э. Циолковский говорил: «Сначала неизбежно идут мысль, фантазия, сказка, а за ними шествует точный расчет».

Публикация в начале XX века теоретических работ пионеров космонавтики К. Э. Циолковского, Ф. А. Цандера, Ю. В. Кондратюка [4] стр. 8, Р. Х. Годдарта [1] вып. 2 стр. 174 рис. 9, Г. Гансвиндта, Р. Эно Пельтри, Г. Оберта [1] вып. 2 стр. 175, В. Гомана в какой-то степени организовала полет фантазии, но в то же время вызвала к жизни новые направления в науке – появились попытки определить, что может дать космонавтика обществу и как она на него влияет.

Одним из пионеров ракетно-космической техники является Роберт Эно Пельтри (Einaut Pelterie) – французский ученый, инженер и изобретатель.

В космонавтику пришел после увлечения авиационной техникой. Одним из первых кто обратил внимание на возможность использования в космической технике атомной энергии.

В 1930 году Р. Эно Пельтри опубликовал в Париже первый том капитального труда «Астронавтика». Второй том вышел в 1935 году. В этих работах суммировано все, что имеет отношение к космическим полетам.

В 1912-1913 годах Роберт Годдард (Goddard) в США разрабатывал теорию движения ракеты. Годдард вывел дифференциальное уравнение движения ракеты и разработал приближенный метод его решения, определил минимальную стартовую массу для подъема одного фунта полезного груза на разные высоты, получил значение КПД ракеты. Им была показана возможность запуска многоступенчатой ракеты и определены выгоды ее применения. С 1915 года занимался стендовыми экспериментами с ракетами на твердом топливе. В 1920 году в Вашингтоне была издана фундаментальная работа Годдарда «Метод достижения предельных высот». Эта работа относится к числу классических в истории ракетно-космической техники.

В 1921 году Годдард начал проведение экспериментальных исследований с ЖРД, используя в качестве окислителя жидкий кислород, а в качестве горючего углеводороды. Первый запуск ЖРД на стенде состоялся в марте 1922 года. Впервые успешный полет ракеты с ЖРД созданной Годдардом произошел 16 марта 1926 года [2] вып. 2 стр. 189 рис. 26, ракета массой 4,2 кг достигла высоты 12,5 м и пролетела 56 м.

Надо сказать, что идеи соединить космическое и земное направление человеческой деятельности принадлежит основателю теоретической космонавтики К. Э. Циолковскому. Когда ученый говорил: «Планета есть колыбель разума, но нельзя вечно жить в колыбели» он не выдвигал альтернативы – либо Земля, либо космос. Циолковский никогда не считал выход в космос следствием какой-то безысходности жизни на Земле. Напротив, он говорил о рациональном преобразовании природы нашей планеты силой разума. Люди, утверждал ученый, «изменят поверхность Земли, ее океаны, атмосферу, растения и самих себя. Будут управлять климатом и будут распоряжаться в пределах солнечной системы, как и на самой Земле, которая еще неопределенно долгое время будет оставаться жилищем для человечества».

В области теоретической разработки вопросов космонавтики и межпланетных путешествий работал талантливый исследователь Ю. В. Кондратюк, который независимо от К. Э. Циолковского в своих работах «Тем, кто будет читать, чтобы строить» (1919 г.) и «завоевание межпланетных пространств» (1929 г.) получил основные уравнения движения ракеты. В ряде положений, рассмотренных в его работах были дополнены основные положения, изложенные в работах Циолковского. Например, Кондратюк предложил при полетах на Луну выводить космическую систему на орбиту ИСЗ, а затем взлетно-посадочный аппарат и направлять его к Луне. Показана энергетическая эффективность такого выведения полезной нагрузки, направляемой к Луне.

Другим крупным представителем отечественной школы космонавтики был Ф. А. Цандер. В опубликованной в 1932 году книге «Проблемы полета при помощи реактивных аппаратов» собраны материалы по конструкциям ракет, теории полета ракет, предложения по использованию в качестве топлив для ракетных двигателей некоторых металлов и сплавов.

В 1921 году по инициативе и под руководством Н. И. Тихомирова в составе Военно-исследовательского комитета при Реввоенсовете РСФСР была создана Газодинамическая лаборатория (ГДЛ), занимавшаяся разработкой реактивных снарядов на баллистических порохах. На основе этих разработок был созданы, успешно испытаны и приняты на вооружение РККА установки залпового запуска реактивных снарядов, сыгравшие немалую роль в боях на Халхин-Голе и в Великой Отечественной войне.

В мае 1929 года в ГДЛ по инициативе В. П. Глушко был создан отдел, в котором в 1930-31 годах были разработаны жидкостные реактивные двигатели ОРМ-1, и ОРМ-2 (опытные реактивные моторы).

В качестве компонентов топлива в двигателях использовалась четырех окись азота (окислитель) и толуол или смесь бензина с толуолом (горючее). Двигатели развивали тягу до 20 кг. На основе результатов испытаний в 1931-32 годах создана и испытана серия ЖРД вплоть до ОРМ-52 с тягой 250-300 кг.

В 1931 году в Москве и Ленинграде при Осовиахим были созданы группы по изучению реактивного движения (Мос ГИРД и Ленинград), которые на общественных началах объединяли энтузиастов ракетостроения.

В Мос ГИРДе работали Ф. А. Цандер, С. П. Королев, Ю. А. Победоносцев, М. К. Тихонравов и др.

В Мос ГИРДе под руководством С. П. Королева была создана по проекту Тихонравова М. К. первая ракета ГИРД-09 с двигателем тягой 25-33 кг, двигатель которой работал на гибридном топливе желеобразном бензине и газообразном кислороде [4] стр. 10 рис. 2. Ракета была испытана в августе 1933 года. В ноябре того же года под руководством Королева С. П. Была создана ракета ГИРД-Х, работающая на жидком топливе спирте и жидком кислороде. Двигатель ракеты развивал тягу до 65 кг. Ракета создавалась по проекту Ф. А. Цандера.

В 1933 году на базе ГДЛ и Мос ГИРД был создан в системе Наркомата обороны Реактивный научно-исследовательский институт РККА (РНИИ РККА), который через несколько месяцев был передан в промышленность. В Институте в 1934-38 годах были созданы ряд ЖРД (от ОРМ-53 до ОРМ-102), причем ОРМ-65, созданный в 1936 году развивал тягу до 175 кг и был наиболее совершенным двигателем того времени.

В 1939 году по инициативе В. П. Глушко и под его руководством было создано опытное конструкторское бюро по жидкостным ракетным двигателям (ОКБ-ГДЛ) где в сороковых годах было разработано семейство авиационных ЖРД, послуживших прототипами при разработке мощных ракетных двигателей.

В СССР сразу после Второй мировой войны практические работы по космическим программам связаны с именами С. П. Королева и М. К. Тихонравова. В начале 1945 года М. К. Тихонравов организовал группу специалистов РНИИ по разработке проекта пилотируемого высотного ракетного аппарата (кабины с двумя космонавтами) для исследования верхних слоев атмосферы. Проект решено было создавать на базе одноступенчатой жидкостной ракеты, рассчитанной для вертикального полета на высоту до 200 км (проект ВР-190). Проект предусматривал решение следующих задач:

- исследование условий невесомости при кратковременном полете человека в герметичной кабине;

- изучение движения центра масс кабины и ее движения около центра масс после отделения от ракеты-носителя;

- получения данных о верхних слоях атмосферы;

- проверка работоспособности систем (разделения, спуска, стабилизации, приземления и др.), входящих в конструкцию высотной кабины.

В проекте ВР-190 впервые были предложены решения, нашедшие применение в современных КА:

- парашютная система спуска, тормозной ракетный двигатель мягкой посадки, система разделения с применением пироболтов;

- электроконтактная штанга для упредительного зажигания двигателя мягкой посадки, безкатапультная герметичная кабина с системой обеспечения жизнедеятельности;

- система стабилизации кабины за пределами плотных слоев атмосферы с применением сопел малой тяги.

В целом проект ВР-190 представлял собою комплекс новых технических решений и концепций, подтвержденных ходом развития отечественной и зарубежной ракетно-космической техники. В 1946 году материалы проекта ВР-190 были доложены Тихонравовым И. В. Сталину. С 1947 года Тихонравов со своей группой работает над идеей ракетного полета и в конце сороковых – начале пятидесятых годов показывает возможность получения первой космической скорости и запуска ИСЗ при помощи разрабатывающейся в СССР ракетной базы. В 1950-53 годах усилия сотрудников группы М. К. Тихонравова были направлены на изучение проблемы создания составных ракет и ИСЗ.

В докладе Правительству в 1954 году о возможности разработки ИСЗ С. П. Королев писал: «По вашему указанию представляю докладную записку тов. Тихонравова М. К. «Об искусственном спутнике Земли.»». В отчете о научной деятельности за 1954 год С. П. Королев отмечал: «Мы полагали бы возможным произвести эскизную разработку проекта самого ИСЗ с учетом ведущихся работ (особенно заслуживает внимания работы М. К. Тихонравова)».

Развернулись работы по подготовке запуска первого ИСЗ ПС-1 . Был создан первый Совет главных конструкторов во главе с С. П. Королевым, который в дальнейшем и осуществлял руководство космической программой СССР, ставшего лидером в освоении космоса. Созданное под руководством С. П. Королева ОКБ-1-ЦКБЭМ-НПО «Энергия» стало с начала 1950-х годов центром космической науки и промышленности в СССР. Космонавтика уникальна тем, что многое предсказанное сначала фантастами, а затем учеными свершилось воистину с космической скоростью. Всего 40 с небольшим лет прошло со дня запуска первого искусственного спутника Земли, 4 октября 1957 года [4] стр. 37 рис. 8, а история космонавтики уже содержит серии замечательных достижений, полученных первоначально СССР и США, а затем и другими космическими державами.

Уже многие тысячи спутников летают на орбитах вокруг Земли, аппараты достигли Луны, Венеры, Марса; научная аппаратура посылалась к Юпитеру, Меркурию, Сатурну для получения знаний об этих удаленных планетах Солнечной системы.

С момента запуска первого космонавта Гагарина Ю. А. на КК «Восток», после запусков КК [4] стр.38 рис. 9 «Салют», «Мир», СССР стал на долгое время ведущей страной мира по пилотируемой космонавтике. Крупномасштабные космические системы в интересах широкого спектра задач (в т. ч. социально-экономических и научных), интеграция космических отраслей различных стран.

Первые мощные ЖРД (созданные под руководством Глушко В. П.), реализация новых научных идей и схем, практически исключивших потери на привод ТНА выдвинули российское двигателестроение на передовые рубежи космической техники. Развитие термо-гидродинамики, теории теплопередачи и прочности, металлургии материалов, химии топлив, измерительной техники, вакуумной и плазменной технологии.

Проектирование сложных космических систем, космодромостроение, высокоточные и надежные СУ удаленных объектов метеообеспечения, спутниковая геодезия, создание информационного пространства.

Ведется борьба с загрязнением космического пространства.

В 1,5-2 раза повышается эффективность средств вооруженной борьбы.

В 20-х годах ХХ века в Германии велись практические работы по созданию ЖРД и разрабатывались проекты баллистических ракет. В работах приняли участие крупные немецкие ученые и инженеры Г. Оберт, Р. Небель, В. Ридель, К. Ридель. Герман Оберт работал над созданием ракет. Еще в 1917 г. создал проект боевой ракеты на жидком топливе (спирт и жидкий кислород), которая должна нести боевой заряд на дальность в несколько сот километров. В 1923 году Оберт написал диссертацию "Ракета в межпланетном пространстве". Дальнейшее развитие идеи Г. Оберта получили в книге "Пути осуществления космического полета" (1929 г.), в которой рассмотрен , в частности о возможности использования при межпланетных перелетах энергии солнечного излучения.

В 1957 году вышла книга Оберта "Люди в космосе", где он снова возвращается к использованию энергии излучения солнца с помощью развертываемых в космосе зеркал.

Обертом разработаны несколько проектов космических ракет с ЖРД, предлагая в качестве горючего спирт, углеводороды, жидкий водород, а в качестве окислителя жидкий кислород.

Р. Небель работал над проектом ракеты, запускающейся по наземным целям с самолета.

В. Ридель проводил экспериментальные исследования ракетных двигателей. В 1927 году в Бреслау было создано. Общество межпланетных сообщений, члены которого создали и испытали в Руссельчейме ракетную тележку.

В конце 20-х годов для проведения экспериментальных работ, направленных на создание ракет с ЖРД при отделе баллистики и боеприпасов управления вооружения рейсвера создана группа по исследованию жидкостных ракетных двигателей под руководством В. Дорнбергера. В 1932 году в Кюнельсдорфе недалеко от Берлина в специально организованной экспериментальной лаборатории начинается разработка ЖРД для баллистических ракет.

В этой лаборатории ведущим конструктором становится Вирнер фон Браун. В 1933 году группой инженеров под руководством Дорнбергера и Брауна была сконструирована баллистическая ракета с ЖРД А-1 со стартовым весом 150 кг, длину 1,4 м, диаметр 0,3 м. Двигатель развивал тягу 295 кг. Хотя конструкция оказалась неудачной, но ее усовершенствованный вариант А-2, созданный на базе А-1, в декабре 1934 года был запушен успешно на острове Боркум (Северное море). Ракета достигла высоты 2,2 км.

В 1936 году при полной поддержке командования рейхсвера группа Дорбергера - Брауна приступила к разработке баллистической ракеты с расчетной дальностью 275 км с весом головной части в 1т. Тогда же было принято решение о строительстве острова Узедом в Балтийском море научно-исследовательского ракетного центра Пенемюнде, состоящего из двух частей. Пенемюнде -Вест для испытания новых видов оружия ВВС и Пенемюнде-Ост, где проводились работы, над ракетой для сухопутных войск.

После неудачных пусков ракеты А-3 начались работы над ракетой А-4 с ЖРД, имевшей следующие тактико-технические характеристики: стартовый вес 12 т, длина 14 м, диаметр корпуса 1,6 м, размах стабилизаторов 3,5 м, тяги двигателей на Земле 25 т, дальность полета около 300 км. Круговое отклонение ракеты должно быть в пределах 0,002 - 0,003 км. Головная часть имела заряд взрывчатого вещества, равный 1 т.

Первый экспериментальный пуск ракеты А-4 состоялся 13 июня 1942 года и окончился неудачей, ракета упала через 1,5 минуты после старта 3 октября 1942 года ракета пролетела 190 км, достигнув высоты 96 км и отклонилась от расчетного места падения на 4 км.

В период с сентября 1944 года по март 1945 года командование немецких вооруженных сил направило в боевые ракетные подразделения около 5,8 тыс. ракет V-2. Почти 1,5 тыс. ракет не достигло пусковых установок. Около 4,3 тыс. ракет было запущенно в сторону Англии, Бельгии. Из них 15% достигли цели. Такой низкий процент успешных пусков объясняется конструктивными недостатками V-2. Однако был получен опыт применения ракетного оружия большой дальности, который немедленно был использован в США и СССР.

 

1.3. Образование рынка космических услуг и развитие РКТ на современном этапе

 

Если в первый период бурного развития ракетной техники решение задач в космосе осуществлялось любой ценой, для решения каждой новой задачи разрабатывалась новая, обычно более совершенная ракета, то уже в конце 60-х годов вопрос о экономической эффективности ракетной техники.

По мере роста практической ее эффективности, увеличению ее отдачи в разных сферах деятельности человека в космосе. В передовых странах, интерес к использованию ее результатов начал проявляться и в большинстве стран мира. Встал вопрос об использовании на правах аренды ракеты-носители и КО стран, имеющих эту технику, либо о создании и освоение собственных космических технологий. Первый путь привел к созданию рынка космических услуг. Однако в связи с большой стоимостью аренды космических линий связи, метеорологических, навигационных и других космических систем, во многих странах был поставлен вопрос о создании собственных средств выведения и КО.

Но часто собственных ресурсов у отдельных даже крупных государств на эти цели не хватало, поэтому начали создаваться интернациональные космические объединения по реализации крупных космических проектов, например Европейское космическое агентство и ряд других.

С конца семидесятых годов рынок космических услуг представляет собой устройство и интенсивно развивающийся сектор мировой экономической системы. Это обусловлено возрастанием потребностей в услугах, которые предоставляются на коммерческой основе с использованием ракетно-космических систем: телекоммуникаций, продукты и услуги дистанционного зондирования поверхности Земли, выведение в космос летательных аппаратов, геодезические и навигационные услуги и т. д. Кроме того, политические изменения привели к ослаблению государственного регулирования в развитии частной инициативы в сфере космической деятельности. В результате создания перспективных технологий и разработки средств выведения и космических аппаратов открылись новые возможности в освоении космоса на коммерческой основе.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.