Сделай Сам Свою Работу на 5

Влияние на время. Часть II

Дать абстрактное определение времени трудно — попытки сделать это часто кончаются отсылкой на само слово «время» или приводят к запутанным лингвистическим конструкциям, цель которых состоит в том, чтобы избежать употребления этого слова. Вместо того чтобы идти этим путем, можно принять прагматическую точку зрения и определить время как то, что измеряется с помощью часов. Конечно, это переносит бремя определения на слово «часы»; мы можем довольно нестрого определить часы как устройство, которое совершает идеально регулярные циклы движения. В этом случае можно измерять промежутки времени, подсчитывая число циклов, выполненных нашими часами. Обычные часы, например, наручные часы, удовлетворяют этому определению — в них имеются стрелки, совершающие равномерные циклы движения, и мы действительно можем измерять протекшее время, подсчитывая число оборотов (или долей оборотов), которые стрелка совершит за время между выбранными событиями.

Конечно, выражение «идеально регулярные циклы движения» неявно использует понятие времени, поскольку слово «равномерные» означает одинаковую длительность каждого цикла. С практической точки зрения мы решаем эту задачу, изготавливая часы из простых физических компонентов, которые основаны на фундаментальных явлениях и, согласно нашим представлениям, будут участвовать в повторяющихся циклических процессах, никак не изменяющихся от цикла к циклу. Простыми примерами являются дедушкины часы с качающимся туда-сюда маятником, а также атомные часы, основанные на повторяющихся атомных процессах.

Наша цель состоит в том, чтобы понять, как движение влияет на ход времени. Поскольку мы определили время, используя понятие часов, мы можем заменить наш вопрос другим: «Как движение влияет на ход часов?» Важно в самом начале подчеркнуть, что наше обсуждение не будет касаться того, как механические элементы конкретных часов реагируют на толчки и удары, которые могут возникать при движении по тряской дороге. Мы будем рассматривать только простейший и самый ясный тип движения с совершенно постоянной скоростью. Следовательно, часы не будут испытывать никакой тряски или ударов. Нас будет интересовать фундаментальный вопрос: как движение влияет на ход времени, т. е. в чем состоит фундаментальное




Глава 2. Пространство, время и взгляд наблюдателя 33

Рис. 2.1. Световые часы состоят из двух параллельных зеркал, между которыми движется фотон, поочередно отражаясь от каждого из них. Часы «тикают» каждый раз, когда фотон завершает свой путь туда и обратно
Рис. 2.2. На переднем плане расположены неподвижные световые часы. Световые часы, расположенные в глубине, движутся с постоянной скоростью
Рис. 2.3. С нашей точки зрения фотон в движущихся часах перемещается по диагональному пути

влияние движения на ход всех часов, независимо от их внешнего вида или конструкции.

Для этой цели мы будем использовать самые простые по принципу действия (но и самые непрактичные) часы. Они известны под названием «световых часов» и состоят из двух зеркал, закрепленных друг напротив друга, между которыми движется один фотон, поочередно отражающийся от каждого из них (см. рис. 2.1). Если зеркала расположены на расстоянии примерно 15 см друг от друга, путешествие фотона «туда и обратно» между зеркалами займет примерно одну миллиардную долю секунды. Будем считать, что один «тик» часов происходит каждый раз, как фотон завершает свой путь туда и обратно; следовательно, один миллиард тиков соответствует одной секунде.

Мы можем использовать световые часы как секундомер для измерения времени, прошедшего между двумя событиями — для этого мы подсчитываем, сколько тиков этих часов произошло в течение интересующего нас периода, и умножаем это число на длительность одного тика. Например, если мы хронометрируем лошадиные бега и установили, что число тиков движения фотона между стартом и финишем составило 55 миллиардов, мы можем утверждать, что скачки длились 55 секунд.

Причина, по которой мы используем световые часы, состоит в том, что их механическая простота не требует лишних деталей и, тем самым, дает ясное понимание того, как движение влияет на ход времени. Для того чтобы убедиться в этом, представим себе, что мы наблюдаем за ходом световых часов, стоящих на соседнем столе. Затем вдруг появляются вторые световые часы, движущиеся мимо первых с постоянной скоростью (см. рис. 2.2). Вопрос, который мы задаем, состоит в следующем: будут ли движущиеся часы идти с той же скоростью, что и неподвижные?

Чтобы ответить на этот вопрос, рассмотрим с нашей точки зрения путь, который должен пройти фотон в движущихся часах за время одного тика. Фотон начинает свой путь от основания движущихся часов, как показано на рис. 2.2, и сначала движется к верхнему зеркалу. Поскольку с нашей точки зрения сами часы движутся, фотон должен перемещаться под углом, как показано на рис. 2.3. Если фотон не будет двигаться по этому пути, он не попадет в верхнее зеркало и вылетит из часов. Поскольку наблюдатель, находящийся на движущихся часах, с полным основанием может считать эти часы неподвижными, а весь окружающий мир движущимся, мы уверены, что фотон попадет в верхнее зеркало и, следовательно, изображенная траектория является правильной. Фотон отражается от верхнего зеркала и снова движется по диагонали, для того чтобы попасть в нижнее зеркало. Этим завершается тик движущихся часов. Простой, но существенный момент состоит в том, что удвоенный диагональный путь, которым представляется траектория движения фотона, длиннее, чем путь вверх-вниз по прямой, по которому движется фотон в непо-


34 Часть II. Дилемма пространства, времени и квантов

движных часах. В дополнение к движению вверх и вниз по вертикали, фотон в движущихся часах, с нашей точки зрения, должен также перемещаться вправо. Далее, постоянство скорости света говорит нам, что фотон в движущихся часах перемещается с той же скоростью, что и фотон в неподвижных часах. Но поскольку он должен пройти большее расстояние, чтобы выполнить один тик, его тики будут более редкими. Этот простой аргумент устанавливает, что с нашей точки зрения движущиеся световые часы будут идти медленнее, чем неподвижные. И, поскольку мы согласились, что число тиков непосредственно отражает продолжительность прошедшего времени, мы видим, что для движущихся часов ход времени замедляется. У читателя может возникнуть вопрос, не может ли это быть просто отражением какого-то особого свойства световых часов, которое не распространяется на дедушкин хронометр или на часы фирмы «Ролекс». Будет ли время, измеренное более привычными часами, тоже замедляться? Использование принципа относительности дает нам в ответ обнадеживающее «да». Закрепим часы «Ролекс» на верхней части каждых из наших световых часов и вернемся к предыдущему эксперименту. Как уже говорилось, неподвижные часы и прикрепленный к ним «Ролекс» измерят одинаковое время, при этом одному миллиарду тиков световых часов будет соответствовать одна секунда, измеренная «Ролексом». А как насчет движущихся световых часов и того «Ролекса», который прикреплен к ним? Замедлится ли ход движущегося «Ролекса», будет ли он идти синхронно со световыми часами, на которых он закреплен? Чтобы сделать наше рассуждение более убедительным, представим, что установка, состоящая из световых часов и прикрепленного к ним «Ролекса», движется потому, что она прикручена болтами к полу не имеющего окон вагона поезда, движущегося по идеально прямым рельсам с постоянной скоростью. Согласно принципу относительности, для наблюдателя, находящегося в поезде, не существует способа обнаружить какое-либо влияние движения поезда. Однако если световые часы и «Ролекс» не будут показывать одинаковое время, это как раз и будет очевидным признаком влияния движения. Таким образом, движущиеся световые часы и прикрепленный к ним «Ролекс» должны продолжать показывать одинаковое время; «Ролекс» должен замедлить свой ход ровно в той же степени, что и световые часы. Независимо от марки, типа или устройства, часы, которые движутся друг относительно друга, будут регистрировать различный ход времени.

Обсуждение световых часов показывает также, что точная разница в показаниях времени между неподвижными и движущимися часами зависит от того, насколько дальше должен переместиться фотон в движущихся часах, чтобы завершить элементарный цикл. Это, в свою очередь, зависит от того, насколько быстро перемещаются движущиеся часы: с точки зрения неподвижного наблюдателя, чем быстрее двигаются часы, тем дальше вправо должен улететь фотон. Таким образом, мы приходим к выводу, что при сравнении с неподвижными часами ход движущихся часов будет становиться тем медленнее, чем быстрее они движутся3'.

Чтобы получить представление о масштабах описываемого явления, заметим, что фотон совершает свой тик за время, равное примерно одной миллиардной доле секунды. Чтобы часы могли пройти заметное расстояние в течение одного тика, они должны двигаться очень быстро — их скорость должна составлять существенную долю скорости света. При движении с обычными скоростями, скажем, 16 км/ч, расстояние, на которое они переместятся вправо за один тик, будет микроскопическим — всего около 0,5 миллионных долей сантиметра. Дополнительное расстояние, которое должен пройти движущийся фотон, будет ничтожным и, соответственно, ничтожным будет влияние на скорость хода движущихся часов. Опять же, в силу принципа относительности, это справедливо для всех часов, т. е. для самого времени. Поэтому существа типа нас, перемещающиеся по отношению друг к другу со столь малыми скоростями, обычно остаются в неведении об искажении хода времени. Хотя соответствующие эффекты, конечно, присутствуют, они невероятно малы. С другой стороны, если бы мы могли, при-


Глава 2. Пространство, время и взгляд наблюдателя 35

хватив с собой движущиеся часы, перемешаться со скоростью, равной, скажем, трем четвертям скорости света, то, согласно уравнениям специальной теории относительности, неподвижный наблюдатель установил бы, что наши часы идут со скоростью, равной двум третям от скорости хода его часов. Согласитесь, это заметная разница.

Жизнь на бегу

Мы увидели, что постоянство скорости света ведет к тому, что движущиеся световые часы будут идти медленнее, чем неподвижные. Согласно принципу относительности, это должно быть справедливо не только для световых, но и для любых других часов, т. е. это должно быть справедливо для самого времени. Для наблюдателя, находящегося в движении, время течет медленнее, чем для неподвижного. Если довольно простое рассуждение, которое привело нас к этому выводу, является верным, то не сможет ли человек прожить дольше, находясь в движении, по сравнению с тем случаем, когда он остается неподвижным? В конце концов, если время течет медленнее для человека, находящегося в движении, по сравнению с тем, кто остается в покое, тогда это различие должно распространяться не только на время, измеренное с помощью часов, но и на время, отсчитанное по ударам сердца, и на старение организма. Недавно было получено прямое подтверждение того, что это действительно так, правда, речь шла не о средней продолжительности жизни человека, а о свойствах частиц микромира — мюонов. Однако здесь есть одна хитрость, которая не позволяет нам объявить, что найден источник вечной молодости.

Мюоны, находящиеся в покое в лаборатории, разрушаются в ходе процесса, который очень напоминает радиоактивный распад, причем средняя продолжительность существования мюона составляет две миллионных доли секунды. Это разрушение представляет собой экспериментальный факт, подтвержденный огромным фактическим материалом. Все это выглядит так, как если бы мюон жил с пистолетом, приставленным к виску; когда он достигает возраста в две миллионные доли секунды, он нажимает на спусковой крючок и разлетается на электроны и нейтрино. Однако когда эти мюоны не сидят в покое в лаборатории, а мчатся в устройстве, называемом ускорителем частиц, который разгоняет их почти до скорости света, их средняя продолжительность жизни, измеренная учеными, резко увеличивается. Это действительно происходит. При скорости 298 000 км/с (примерно 99,5 % скорости света) время жизни мюона увеличивается в десять раз. Объяснение, согласно специальной теории относительности, состоит в том, что «наручные часы», которые носят мюоны, идут гораздо медленнее, чем лабораторные часы. Поэтому спустя долгое время после того, как лабораторные часы покажут, что мюону пора нажимать на спусковой крючок и погибать, часы, которые носит мчащийся мюон, будут показывать, что до рокового момента еще далеко. Это весьма непосредственная и очень яркая демонстрация влияния движения на течение времени. Если бы люди носились с такой же скоростью, как мюоны, продолжительность их жизни возросла бы во столько же раз. Вместо того чтобы жить семьдесят лет, люди жили бы 700 4).

Где же подвох? Хотя лабораторные наблюдатели видят, что движущиеся с большой скоростью мюоны живут гораздо дольше, чем их неподвижные собратья, это связано с тем, что для мюонов, находящихся в движении, время течет намного медленнее. Это замедление времени распространяется не только на часы, которые они носят, но и на все виды их деятельности. Например, если неподвижный мюон может прочитать 100 книг за время своей короткой жизни, то его мчащийся с большой скоростью родственник сможет прочитать те же самые 100 книг, поскольку, хотя продолжительность его жизни увеличится по сравнению с неподвижным мюоном, скорость чтения, а также всего другого в его жизни уменьшится в такое же число раз. С точки зрения лабораторного наблюдателя это равносильно тому, что движущийся мюон живет медленной жизнью; он живет дольше, чем неподвижный мюон, но «количество жизни»


36 Часть И. Дилемма пространства, времени и квантов

останется тем же самым. Такой же вывод, конечно, будет справедлив и для мчащихся людей с их средней продолжительностью жизни, измеряемой веками. С их точки зрения это будет обычная жизнь. С нашей точки зрения они будут жить в чрезвычайно замедленном ритме и поэтому средняя продолжительность их жизни составляет огромный промежуток нашего времени.

И все же: кто движется?

Относительность движения является ключом к пониманию теории Эйнштейна и одновременно источником недоразумений. Вы могли заметить, что перестановка точек зрения приводит к взаимному изменению ролей «движущихся» мюонов, чьи часы, как мы установили, идут медленно, и их «неподвижных» собратьев. В случае с Джорджем и Грейс каждый из них имел равное право объявить себя неподвижным, а другого — движущимся. Но мюоны, о которых мы говорим, что они движутся, также имеют все основания сказать, что с их точки зрения неподвижными являются они, а движутся (в противоположном направлении) те мюоны, которые названы «неподвижными». Это ведет к совершенно противоположному выводу, что часы, которые носят мюоны, названные нами неподвижными, идут медленнее, чем часы мюонов, которых мы считали движущимися.

Рассматривая подписание договора с помощью сигнальной лампы, мы уже сталкивались с ситуацией, в которой различные точки зрения ведут к выводам, выглядящим совершенно несовместимыми. Тогда мы, следуя основным принципам специальной теории относительности, отказались от изжившей себя концепции, состоящей в том, что каждый, независимо от состояния его движения, согласится с тем, что события произошли одновременно. Однако то противоречие, которое мы рассматриваем сейчас, выглядит хуже. Как может каждый из двух наблюдателей заявлять, что часы другого идут медленнее? Еще более поразительно то, что различные, но одинаково правомерные точки зрения мюонов, похоже, приводят к заключению, что каждая группа объявит, скорбно, но твердо, что они умрут первыми. Мы усвоили, что мир может иметь некоторые неожиданно странные свойства, но хранили надежду, что он хотя бы не будет логически противоречив. Так что же происходит?

Как и со всеми кажущимися парадоксами, вытекающими из специальной теории относительности, эти логические противоречия разрешаются при более тщательном изучении, позволяя по-новому глубже понять устройство Вселенной. Чтобы избежать еще большего антропоморфизма, вернемся от мюонов к Джорджу и Грейс, которые теперь в дополнение к сигнальным огням имеют на своих скафандрах яркие цифровые часы. С точки зрения Джорджа он неподвижен, а Грейс, с ее зелеными сигнальными огнями и большими цифровыми часами, появляется вдалеке и проплывает мимо него во мраке пустого космического пространства. Он замечает, что часы Грейс идут медленнее, чем его часы (степень замедления зависит от скорости, с которой они пролетают мимо друг друга). Если бы он был хоть чуть наблюдательнее, он мог бы заметить, что не только часы у Грейс идут медленнее, но и все, что она делает — то, как она помахала ему рукой, скорость, с которой она мигала глазами, — все происходит в замедленном темпе. С точки зрения Грейс те же самые наблюдения относятся к Джорджу.

Это кажется парадоксальным, однако давайте попробуем поставить точный эксперимент, который разрешит логическое противоречие. Простейшая возможность состоит в том, чтобы, когда Джордж и Грейс встретятся в пространстве, они оба установили свои часы на 12:00. Так как они путешествуют по отдельности, каждый утверждает, что часы другого отстают. Чтобы избежать этого противоречия, Джордж и Грейс должны встретиться вновь и сравнить, сколько времени прошло на их часах. Но как они могут сделать это? Ну да, у Джорджа ведь есть ранцевый двигатель, который он может использовать, чтобы, как он считает, догнать Грейс. Но если он сделает это, симметрия двух точек зрения, которая является причиной парадокса, будет нарушена, поскольку Джорджу придется испытать дей-


Глава 2. Пространство, время и взгляд наблюдателя 37

ствие ускорения, которое не является свободным движением. Когда они воссоединятся таким манером, часы Джорджа точно будут показывать меньше времени, так как он теперь определенно может сказать, что он был в движении, поскольку ощущал его. Теперь точки зрения Джорджа и Грейс перестают быть равноправными. Включив свой ранцевый двигатель, Джордж отказался от утверждения, что он находится в покое.

Если Джордж последует за Грейс подобным образом, различия в показаниях их часов будут зависеть от их относительной скорости и от того, как Джордж использовал свой ранцевый двигатель. Как нам уже известно, если скорости малы, различия должны быть минимальны. Но если скорость составляет значительную часть скорости света, различие может достигать минут, суток, лет, веков и более. В качестве конкретного примера представим, что относительная скорость Джорджа и Грейс, когда они разлетаются в разные стороны, составляет 99,5 % от скорости света. Далее, пусть по своим часам Джордж ждет 3 года и включает свой ранцевый двигатель, который мгновенным толчком посылает его назад к Грейс с той скоростью, с которой они перед этим разлетались, т. е. равной 99,5 % скорости света. Когда он достигает Грейс, по его часам проходит 6 лет, так как чтобы догнать Грейс, ему нужно 3 года. В то же время, как показывает математика специальной теории относительности, по ее часам пройдет 60 лет. Это не шутка: Грейс придется основательно покопаться в памяти, чтобы вспомнить Джорджа, проплывшего мимо нее в пространстве 60 лет назад. С другой стороны, для Джорджа это было всего 6 лет назад. Фактически, движение Джорджа сделало его путешественником во времени, хотя и в очень узком смысле: он совершил путешествие в будущее Грейс.

Необходимость поставить часы рядом, чтобы непосредственно сравнить показания, может показаться незначащей деталью, но в действительности именно в этом суть дела. Можно придумать множество фокусов для того, чтобы обойти это слабое место парадокса, но все они неизбежно провалятся. Например, пусть вместо того, чтобы соединять часы, Джордж и Грейс сравнят их показания, созвонившись по сотовому телефону? Если бы такая связь была мгновенной, мы бы столкнулись с непреодолимым противоречием: с точки зрения Грейс часы Джорджа идут медленнее, и, следовательно, он должен сообщить, что прошло меньше времени; в то же время с точки зрения Джорджа замедлили ход часы Грейс, поэтому именно она должна сказать, что прошло меньше времени. Они оба не могут быть правы, и мы попадаем в затруднительное положение. Ключевым моментом здесь, конечно, является то, что как любой другой вид связи, сотовые телефоны не могут передавать сообщения мгновенно. Сотовые телефоны используют радиоволны, которые представляют собой разновидность электромагнитных колебаний, следовательно, сигналы, которые они передают, распространяются со скоростью света. Это означает, что необходимо некоторое время на то, чтобы сигналы достигли адресата, что дает достаточную задержку для того, чтобы точки зрения наблюдателей перестали противоречить друг другу.

Попробуем сначала увидеть картину глазами Джорджа. Представим, что через каждый час Джордж повторяет в свой сотовый телефон: «Двенадцать часов дня, полет нормальный»; «час дня, полет нормальный» и т. д. Поскольку с его точки зрения часы Грейс замедлились, на первый взгляд, он подумает, что Грейс будет получать эти сообщения до того, как на ее часах настанет час, указанный в сообщении. Поэтому он будет считать, что Грейс должна согласиться с тем, что ее часы идут медленнее. Но потом он подумает: «Поскольку Грейс удаляется от меня, сигнал, который я посылаю ей по сотовому телефону, должен проходить все большее расстояние, чтобы достичь ее. Может быть, время, затрачиваемое на то, чтобы пройти это дополнительное расстояние, компенсирует замедление ее часов». Догадка Джорджа о том, что здесь есть два конкурирующих эффекта — замедление хода часов Грейс и время пробега его сигнала, — заставляет его присесть и попытаться количественно оценить суммарный эффект этих двух величин. Полученный им результат показывает, что эффект времени пробега


38 Часть II. Дилемма пространства, времени и квантов

с избытком компенсирует замедление хода часов Грейс. Он приходит к удивительному выводу, что Грейс будет получать его сообщения о том, что наступил очередной час, после того, как этот час наступит на ее часах. В действительности, поскольку Джордж осведомлен о том, что Грейс хорошо знает физику, он понимает, что она учтет время пробега сигнала при оценке хода его часов на основе его сообщений по сотовому телефону. Небольшие дополнительные расчеты показывают, что даже с учетом времени пробега выполненный Грейс анализ сообщений Джорджа приведет ее к выводу, что его часы замедлились сильнее, чем ее.

Точно такой же анализ может быть проведен, если мы примем точку зрения Грейс на ее сообщения Джорджу о том, что прошел очередной час. Сначала замедление хода часов Джорджа (с ее точки зрения) заставит ее подумать, что он получит ее очередное сообщение до того, как пошлет свое собственное. Но когда она вспомнит, что ее сигнал должен пройти все увеличивающееся расстояние, чтобы достичь удаляющегося в темноту Джорджа, она поймет, что на самом деле он будет получать их после того как отправит свои. Опять же, она поймет, что даже если Джордж учтет время пробега согласно ее сообщениям по сотовому телефону, он будет считать, что ее часы идут медленнее, чем его.

До тех пор, пока Джордж или Грейс не испытают ускорения, их точки зрения будут совершенно равно обоснованы. Каким бы парадоксальным это ни казалось, они поймут, что каждый имеет полное право считать, что часы другого замедлили ход.



©2015- 2019 stydopedia.ru Все материалы защищены законодательством РФ.