Сделай Сам Свою Работу на 5

Определение физических свойств газа





МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ»

 


Теоретические основы

Пропускная способность и режим работы

Магистрального газопровода

Пропускная способность и режим работы магистрального газопровода (МГ) определяются совместной работой КС и линейных участков, его составляющих. При этом режимы работы отдельных КС и участков, в связи с различием их геометрических размеров, давления и температуры газа, значительно отличаются, что диктует необходимость поочередного расчета всех элементов системы. Выходные параметры одного элемента являются входными параметрами следующего за ним. Таким образом, поочередно следуют расчеты работы участков и компрессорных станций. На каждом этапе ведется проверка соответствия полученных параметров условиям нормальной работы газопровода и оптимальности режима.

По аналогичной схеме будет работать математическая модель МГ при расчетах на ЭВМ. Для ее реализации требуется формализовать работу основных элементов системы: участок, газоперекачивающий агрегат (ГПА), пылеуловитель (ПУ), аппарат воздушного охлаждения (АВО).

Рассмотрим поочередно основные уравнения, позволяющие оценить изменения параметров газа при его перемещении по элементам МГ, и на их основе составим алгоритмы решения важнейших задач эксплуатации газопровода.



Основным расчетным уравнением для участка МГ является уравнение пропускной способности. В общем случае пропускная способность участка зависит от его длины, внутреннего диаметра труб, перепада давления, физических свойств газа и рельефа трассы. Учитывая, что плотность газа мала, влиянием рельефа чаще всего можно пренебречь. Согласно ОНТП газопровод рассчитывается как горизонтальный при разности геодезических отметок менее 100 м. В этом случае уравнение пропускной способности используется в следующем виде:

, (6.1)

где - пропускная способность участка (Т = 293К, Р = 0,1 МПа), млн. м3/сут; Р1, Р2 - давление в начале и в конце участка, МПа; D - эквивалентный диаметр труб, м; z - коэффициент сжимаемости газа при среднем значении давления и температуры в участке; T - средняя

 

температура газа в участке, К; l - длина участка, км; λ - расчетное значение коэффициента гидравлического сопротивления.



Для определения пропускной способности необходимо определить:

ü коэффициент гидравлического сопротивления;

ü среднее давление газа на участке;

ü среднюю температуру газа на участке;

ü физические свойства газа при Pср и Tср.

Определение физических свойств газа

Физические свойства газа определяются при средних значениях Т и Р участка (расчет участка), при Т и Р на входе в ЦН (расчет ЦН) и при средних значениях Т и Р в АВО (расчет АВО).

Широкое использование ЭВМ диктует необходимость аналитического определения физических свойств газа. При гидравлических и тепловых расчетах МГ используются следующие физические величины: коэффициент сжимаемости, динамическая вязкость, удельная теплоемкость и коэффициент Джоуля - Томсона. Базовым параметром является относительная плотность газа (Δ), или плотность газа при стандартных условиях (ρСТ), между которыми существует следующая связь:

. (6.2)

Коэффициент сжимаемости (z) и динамическая вязкость газа (η) определяются через приведенные значения давления и температуры:

, (6.3)

где PПР и ТПР - приведенные давление и температура; Р и PКР - давление, при котором определяются свойства и критическое давление газа; Т и ТКР - температура, при которой определяются свойства и критическая температура газа:

(6.4)

. (6.5)

В настоящее время для определения коэффициента сжимаемости и динамической вязкости газа рекомендуется использовать следующие зависимости:

, (6.6)

где ;

 

, (6.7)

где η - динамическая вязкость газа, Па c.



Удельная теплоемкость cp (кДж/(кгК)) и коэффициент Джоуля - Томсона Di (К/МПа) газа определяются из уравнений (6.8) и (6.9):

, ( 6.8)

. (6.9)

При решении задач следует постоянно следить за соответствием условий, при которых определяются физические свойства газа реальным, условиям рассчитываемого участка газопровода.

 

6.1.2. Определение коэффициента гидравлического сопротивления

 

В общем случае коэффициент гидравлического сопротивления зависит от числа Рейнольдса Re и относительной шероховатости ε

, (6.10)

где k – эквивалентная шероховатость труб.

При отсутствии уточненных данных k принимается равным 0,03 мм.

Число Рейнольдса определяется зависимостью

, (6.11)

где η – динамическая вязкость газа, Па×с.

Приняв и , получаем

. (6.12)

Для практических расчетов Re можно определять по следующей формуле

(6.13)

где Q – объемная производительность МГ, млн. м3/сут; D – внутренний диаметр труб, м.

Для условий МГ можно считать динамическую вязкость постоянной величиной. В таком случае постоянной величиной будет и Re.

Для расчетов МГ нормами технологического проектирования рекомендуется формула ВНИИгаза

. (6.14)

Эта формула справедлива для всей области турбулентного режима

 

течения газа. МГ при полной их загрузке обычно работают в квадратичной зоне этого режима. Для определения зоны, в которой работает МГ, используются переходные значения числа Рейнольдса и производительности

, (6.15)

. (6.16)

В квадратичной зоне влияние Re незначительно, поэтому

(6.17)

или при k = 0,03 мм

, (6.18)

здесь D – диаметр МГ, мм.

На гидравлическое сопротивление МГ оказывают влияние местные сопротивления и засорение труб. Для учета этих факторов при расчетах используется расчетное значение коэффициента гидравлического сопротивления

, (6.19)

где Е – коэффициент гидравлической эффективности газопровода.

В соответствии с ОНТП и правилами технической эксплуатации МГ, при отсутствии реального значения эффективности работы МГ, принимается Е = 0,95 для газопровода оборудованного узлами для очистки труб и Е = 0,92 при их отсутствии.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.