ТЕОРЕМА ИЗМЕНЕНИЯ КОЛИЧЕСТВА ДВИЖЕНИЯ ДЛЯ ПОТОКА ЖИДКОСТИ
При решении некоторых гидравлических задач использования уравнения Бернулли недостаточно, и в этих случаях применяется теорема об изменении количества движения материальной точки.
Количеством движения материальной точки называется произведение ее массы на скорость ее движения . Количество движения является вектором, направление которого совпадает с направлением движения, т.е. со скоростью. Количество движения, зависящее от массы и ее скорости, является мерой механического движения. Понятие количества движения (КД) положено в основу механики Ньютона.
Тело массой под действием сил переместится в другое положение за определенное время , и скорость тела изменится до .
Изменение количества движения
. (3.92)
За этот промежуток времени на тело будет действовать импульс сил
. (3.93)
Теорема количества движения сформулирована следующим образом. Изменение количества движения материальной точки за некоторый промежуток времени равно сумме импульсов сил, приложенных к точке, за этот же промежуток времени, :
. (3.94)
Теорема количества движения называется также теоремой импульсов.
Применим данную теорему к участку потока между сечениями 1-1 и 2-2 при установившемся движении потока жидкости расходом в определенный промежуток времени (рис. 3.12). За время участок между сечениями 1-1 и 2-2 переместится в положение, определяемое сечениями 1'-1' и 2'-2'. Изменение количества движения
(3.95)
Масса элементов участков 1-1' и 2-2' на рисунке заштрихованы. Так как стенки потока непроницаемы, то согласно уравнению неразрывности массы этих элементов одинаковы:
. (3.96)
Масса, проходящая через сечения,
.
Рис. 3.12. К теореме количества движения для потоков жидкости
Если в живом сечении местные скорости в разных его точках различны, то количество движения
, (3.97)
где - скорость в определенной точке сечения, местная скорость.
При предположении, что скорости во всех точках живого сечения равны средней скорости , вводится коэффициент Буссинеска (коэффициент количества движения)
. (3.98)
Коэффициент Буссинеска - отношение фактического количества движения к условному .
Количество движения, выраженное через среднюю скорость,
. (3.99)
Для турбулентных потоков на основании опытных исследований .
На практике при решении гидравлических задач обычно коэффициент Буссинеска не учитывается, т.е. принимается .
Средние скорости в сечениях равны , и , тогда количество движений для массы элементов участков:
;
. (3.100)
Изменение количества движения
. (3.101)
Относительно оси
. (3.102)
Рассмотрим все внешние силы и импульс, действующие на объем жидкости , находящийся между сечениями 1-1 и 2-2.
• Силы давления, действующие на торцы сечений 1-1 и 2-2,определяются силами и . Проекция импульса сил давления на ось
. (3.103)
• Сила тяжести выделенного объема жидкости . Проекция импульса сил давления на ось
. (3.104)
• Силы реакции боковых стенок, ограничивающих рассматриваемый объем жидкости, равны . Проекция импульса сил реакций стенок на ось
. (3.105)
• Сила внешнего трения, воздействующая на внутренние стороны боковых стенок, - . Проекция импульса сил внешнего трения на
. (3.106)
Таким образом, импульс на ось
. (3.107)
Уравнение изменения количества движения в гидравлической форме согласно (3.102) и (3.107) имеет следующий вид:
. (3.108)
Уравнение изменения количества движения в гидравлическом виде можно сформулировать следующим образом.
Изменение количества движения потока жидкости при переходе от плоского живого сечения 1-1 к плоскому живому сечению 2-2 за единицу времени относительно выбранной координатной оси равно сумме проекции внешних сил на ось, действующих на объем жидкости между сечениями 1-1 и 2-2.
НЕКОТОРЫЕ ПРИЛОЖЕНИЯ УРАВНЕНИЯ БЕРНУЛЛИ
Расходомер Вентури
Расходомер Вентури представляет собой плавно суженную и расширяющуюся цилиндрическую вставку, устанавливаемую в трубе. Чтобы понять принцип его работы, рассмотрим рис. 3.13. Установим два пьезометра: один в расширенной части расходомера, другой - в сужении. Приведенные далее рассуждения должны показать, что при изменении расхода жидкости, проходящей по трубопроводу, меняется разность показаний пьезометров .
Рис. 3.13. Расходомер Вентури
Напишем уравнение Бернулли для сечений 1-1 и 2-2, полагая отсутствие потерь напора, :
. (3.109)
Поскольку , следовательно, показания пьезометра в первом сечении будут больше, чем во втором:
.
Разность показаний пьезометров составляет
. (3.110)
Подставив выражение (3.110) в уравнение (3.109), получим
. (3.111)
Поскольку площади поперечных сечений 1-1 и 2-2 известны, то, используя уравнение неразрывности для несжимаемой жидкости, имеем
,
или
.
Подставив полученное выражение для , в уравнение (3.111) и решив его относительно скорости , получим
. (3.112)
Теоретический расход жидкости в трубопроводе составляет
. (3.113)
или
,
где - постоянная расходомера.
. (3.114)
Таким образом, если известны диаметр трубы и диаметр сужения и измерена разность пьезометрических высот, то можно вычислить расход жидкости, проходящей по трубопроводу по формуле (3.113).
Следует отметить, что в случае движения идеальной жидкости приведенные ранее рассуждения правильны. При движении через расходомер вязкой жидкости возникают потери напора, поэтому необходимо ввести в конечную формулу соответствующую поправку на сопротивление в виде коэффициента расхода водомера , .
Коэффициент расхода водомера Вентури, изготовленного в соответствии со стандартом по измерению расхода жидкостей, составляет .
Окончательная формула с учетом
, (3.115)
где - окончательная постоянная водомера, имеющего конкретные значения и .
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|