Принцип действия катодной защиты
МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ»
Теоретические основы
Катодная защита подземных металлических сооружений
Принцип действия катодной защиты
При контакте металла с грунтами, относящимися к электролитическим средам, происходит коррозионный процесс, сопровождаемый образованием электрического тока, и устанавливается определенный электродный потенциал. Величину электродного потенциала трубопровода можно определить по разности потенциалов между двумя электродами: трубопроводом и неполяризующимся медно-сульфатным элементом. Таким образом, значение потенциала трубопровода представляет собой разность его электродного потенциала и потенциала электрода сравнения по отношению к грунту. На поверхности трубопровода протекают электродные процессы определенного направления и стационарные по характеру изменения во времени.
Стационарный потенциал принято называть естественным потенциалом, подразумевая при этом отсутствие на трубопроводе блуждающих и других наведенных токов.
Взаимодействие корродирующего металла с электролитом разделяется на два процесса: анодный и катодный, которые проходят одновременно на различных участках поверхности раздела металла и электролита.
При защите от коррозии используют территориальное разделение анодного и катодного процессов. К трубопроводу подключают источник тока с дополнительным электродом-заземлителем, с помощью которого накладывают на трубопровод внешний постоянный ток. В этом случае анодный процесс происходит на дополнительном электроде-заземлителе.
Катодная поляризация подземных трубопроводов осуществляется с помощью наложения электрического поля от внешнего источника постоянного тока. Отрицательный полюс источника постоянного тока подключается к защищаемой конструкции, при этом трубопровод является катодом по отношению к грунту, искусственно созданный анод-заземлитель - к положительному полюсу.
Принципиальная схема катодной защиты показана на рис. 14.1. При катодной защите отрицательный полюс источника тока 2 подключен к трубопроводу 1, а положительный - к искусственно созданному аноду-заземлителю 3. При включении источника тока от его полюса через анодное заземление поступает в грунт и через поврежденные участки изоляции 6 на трубу. Далее через точку дренажа 4 по соединительному проводу 5 ток возвращается снова к минусу источника питания. При этом на оголенных участках трубопровода начинается процесс катодной поляризации.
Рис. 14.1. Принципиальная схема катодной защиты трубопровода:
1 - трубопровод; 2 - внешний источник постоянного тока; 3 - анодное заземление;
4 - точка дренажа; 5 - дренажный кабель; 6 - контакт катодного вывода;
7 - катодный вывод; 8 - повреждения изоляции трубопровода
Поскольку напряжение внешнего тока, приложенного между электродом-заземлителем и трубопроводом, значительно превышает разность потенциалов между электродами коррозионных макропар трубопровода, стационарный потенциал анодного заземления не играет определяющей роли.
С включением электрохимической защиты (j0a.доп) нарушается распределение токов коррозионных макропар, сближаются значения разности потенциалов «труба – земля» катодных участков (j0к) с разностью потенциалов анодных участков (j0а), обеспечиваются условия для поляризации.
Катодная защита регулируется путем поддержания необходимого защитного потенциала. Если наложением внешнего тока трубопровод заполяризован до равновесного потенциала (j0к = j0а) растворения металла (рис. 14.2 а), то анодный ток прекращается и коррозия приостанавливается. Дальнейшее повышение защитного тока нецелесообразно. При более положительных значениях потенциала наступает явление неполной защиты (рис. 14.2 б). Оно может возникнуть при катодной защите трубопровода, находящегося в зоне сильного влияния блуждающих токов или при использовании протекторов, не имеющих достаточно отрицательного электродного потенциала (цинковые протекторы).
Критериями защиты металла от коррозии являются защитная плотность тока и защитный потенциал.
Катодная поляризация неизолированной металлической конструкции до величины защитного потенциала требует значительных токов. Наиболее вероятные величины плотностей токов, необходимых для поляризации стали в различных средах до минимального защитного потенциала (-0,85 В) по отношению к медно-сульфатному электроду сравнения, приведены в табл. 14.1
Рис. 14.2. Коррозионная диаграмма для случая полной поляризации (а) и
неполной поляризации (б)
Обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность трубопровода. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. Так, для катодной защиты стали с хорошим покрытием в почве требуется всего 0,01 ... 0,2 мА/м2.
Таблица 14.1
Плотность тока, необходимая для катодной защиты
неизолированной стальной поверхности в различных средах
Среда (почва)
| Плотность тока,
необходимая для катодной защиты, мА/м2
| Стерильная нейтральная
| 4,3 ... 16,1
| Хорошо аэрируемая нейтральная
| 21,5 ... 32,3
| Сухая, хорошо аэрируемая
| 5,4 ... 16,1
| Влажная
| 16,9 ... 64,6
| Высококислая
| 53,8 ... 161,4
| Поддерживающая активность сульфатновос-станавливающих бактерий
| 451,9
|
Защитная плотность тока для изолированных магистральных трубопроводов не может стать надежным критерием защиты вследствие неизвестного распределения поврежденной изоляции трубопровода, определяющую фактическую площадь контакта металла с грунтом. Даже для неизолированной трубы (патрон на подземном переходе через железные и шоссейные дороги) защитная плотность тока определяется по геометрическим размерам сооружения и является фиктивной, так как остается неизвестной доля поверхности патрона, покрытая постоянно присутствующими пассивными защитными слоями (окалиной и др.) и не участвующая в процессе деполяризации. Поэтому защитная плотность тока как критерий защиты применяется при некоторых лабораторных исследованиях, выполняемых на образцах металла.
Таблица 14.2
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|