Сделай Сам Свою Работу на 5

Исследования нервной деятельности и поведения





Начало науке о нервной системе — неврологии — положил швейцарский физио­лог Альбрехт фон Галлер (1708—1777), опубликовав­ший в 60-х годах XVIII в. восьмитомное руководство по физиологии человека. До него считалось, что нер­вы — это полые трубки, которые несут загадочный «дух», или флюид, подобно тому, как вены — кровь. Однако Галлер отверг это мнение и предложил но­вое понимание нервной деятельности, исходя из дан­ных эксперимента.

Например, он выяснил, что мышцы обладают «раз­дражимостью», то есть слабое возбуждение мышцы приводит к ее резкому сокращению. Слабое возбуж­дение нерва также приводит к резкому сокращению связанной с ним мышцы. Нерв более «раздражим», чем мышца, и Галлер делает вывод, что движениями мышц управляет в большей мере стимуляция нерва, чем непосредственное их раздражение.

Он показал также, что ткани сами по себе не вос­принимают ощущений; пронизывающие их нервы не­сут импульсы, которые вызывают ощущения. Но все нервы ведут к головному или спинному мозгу — явное указание, что именно здесь находятся центры восприя­тия и ответного действия. Производя опыты со стиму­ляцией или повреждением различных участков голов­ного мозга животных, Галлер наблюдал различные типы ответного действия.



Работы Галлера продолжил немецкий врач Франц Галль (1758—1828), который в 1796 г. начал читать лекции по неврологии. Он показал, что нервы идут к серому веществу головного мозга. Белое веще­ство мозга Галль считал связующей субстанцией.

Подобно Галлеру, Галль предполагал, что опреде­ленные участки головного мозга управляют опреде­ленными участками тела. Он довел это положение до крайности, считая, что участки головного мозга конт­ролируют не только чувствительные восприятия и спе­цифические мышечные движения, но и все виды эмо­ций и свойства темперамента. Его последователи утверждали, что черты человека можно определить ощупыванием выпуклостей на черепе. Эти взгляды легли в основу псевдонауки — френологии.

Нелепости френологии заслонили тот факт, что в утверждениях Галля была доля правды — мысль о ло­кализации функций в головном мозге. Это положение изучал французский нейрохирург Поль Брока, который показал (1861), что у больных, страдавших потерей речи, обнаруживаются повреждения определенного участка в верхнем отделе головного мозга, на тре­тьей извилине левой лобной доли, которая до сих пор носит название извилины Брока, или центра Брока.



К 1870 г. два немецких невролога, Густав Фрич (1838—1891) и
Эдвард Гитциг (1838—1907), шагнули еще дальше. Прикасаясь электрическими иг­лами к мозгу живых собак, они нашли, что раздраже­ние определенного участка вызывает определенное мы­шечное движение, и таким образом смогли, так сказать, нанести карту тела на головной мозг. Им уда­лось показать, что левое полушарие головного мозга контролирует правую половину тела, а правое полу­шарие — левую.

Теперь уже не приходилось сомневаться, что го­ловной мозг управляет деятельностью тела, причем делает это высокоспецифическим образом. Появилась надежда связать все психические функции с физиоло­гией головного мозга, что укре­пляло материалистические представления.

В середине XIX в. учёные обнаружили в головном и спин­ном мозге нервные клетки, но природа самих нервных волокон оставалась еще не раскрытой. Ясность в этот вопрос внес немецкий анатом Вильгельм
Вальдейер
(1836—1921). В 1891 г. он пришел к выводу, что нерв­ные волокна представляют собой тонкие отростки нервных клеток. Следовательно, нервная система состоит из нейронов — собственно нервных клеток со всеми их отростками. Такова суть нейронной теории. Далее Вальдейер показал, что хотя отростки отдельных ней­ронов и могут значительно приближаться друг к дру­гу, но в местах соединений нейронов имеется только контакт, соприкосновение нервных субстанций, а не слияние их. Зона межнейронных соединений позже получила название синапса.



Большой вклад в развитие нейронной теории внесли итальянский цитолог Камилло Гольджи (1844 - 1926) и испанский невролог Сантьяго Рамон-и-Кахаль(1852 - 1934). В 1873 г. Гольджи применил для окраски клеток особый краситель, содержащий соли серебра. Пользуясь им, он обнаружил внутриклеточ­ные образования (аппарат Гольджи). Предложив свой метод окраски клеток, он дал толчок развитию нейроанатомии. Ученому удалось рассмот­реть неизвестные прежде детали, обнаружить тонкие отростки нервных клеток и отчетливо увидеть синап­сы. Однако когда Вальдейер выступил с ней­ронной теорией, Гольджи не принял ее.

Однако Рамон-и-Кахаль решительно поддержал нейронную теорию. Пользуясь улучшенной модифика­цией метода окраски, он очень много сделал для укрепления этой теории. Ему принадлежат классиче­ские работы о строении сетчатки глаза, спинного моз­га, мозжечка и других частей нервной системы.

Что же представляют собой импульсы, проходящие по нервным путям? Ещё в 1791 г. итальянский физиолог Луи­джи Гальвани (1737—1798) обнаружил, что мышцы препарированной лягушки могут сокращаться под влиянием электрического тока, она возродилась в но­вой форме. Гальвани объявил о существовании соб­ственного, так называемого «животного» электриче­ства мышцы.

В своей первоначальной формулировке эта мысль была неверной, но, соответственно видоизмененная, она дала плоды. Немецкий физиолог Эмиль Дюбуа - Реймон (1818—1896), еще будучи студентом, написал работу об электрических рыбах; с тех пор электриче­ские явления в животных тканях стали предметом его научного интереса. Он усо­вершенствовал старые приборы и зарегистрировал очень слабые эле­ктрические токи, проходящие по нерву и мышце. Он показал, что нервный импульс сопровождается изме­нениями в электрическом состоянии нерва.

Электрические разряды пробегают не только по нерву, но и по мышце. В ритмически сокращающихся мышцах, как, например, в сердце, электрические из­менения также ритмичны. В 1903 г. голландский фи­зиолог Биллем Эйнтховен (1860—1927) сконструиро­вал очень чувствительный струнный гальванометр, способный обнаруживать чрезвычайно слабые токи. Он использовал его для регистрации ритмически из­меняющихся электрических потенциалов сердца, по­мещая на коже специальные электроды. К 1906 г. он установил, что по электрокардиограммам (ЭКГ) можно выявить различные нарушения работы сердца.

Сходные методы использовал в 1929 г. немецкий психиатр
Ганс Бергер (1873—1941). Он прикреплял электроды к черепу и регистрировал ритмические из­менения потенциалов, которые сопровождают мозго­вую деятельность. Электроэнцефалограммы (ЭЭГ) очень трудны для расшифровки. Однако при значительных повреждениях головного мозга, при наличии опухоли изменения выявить легко. Точно так же эпилепсия, считавшаяся «священной болезнью», может быть обнаружена по измененной ЭЭГ. До Бергера русский физиолог Владимир Владимирович Правдич - Неминский осуществил при помощи струнного гальва­нометра регистрацию электрических проявлений головного мозга и предложил в 1913 г. первую классификацию потенциалов элек­трической активности.

И все же открытие электрических потенциалов не дало исчерпывающего ответа на все вопросы. Элек­трический импульс, проходящий через нервное окон­чание, сам по себе не способен преодолеть синапти-ческого разрыва между двумя нейронами и вызвать новый электрический импульс в следующем нейроне В 1921 г. австрийский физиолог Отто Леви (1873— 1961) описал химическую передачу нервных импульсов. Нервный импульс наряду с электрическим включает в себя и химическое изменение. Химическое ве­щество (медиатор), освобождающееся при возбуждении нерва, переходит через синаптический разрыв и таким об­разом передает нервное возбуждение. Английский физиолог Генри Дейл установил, что это химическое вещество - ацетилхолин. Позже были открыты и дру­гие химические вещества, так или иначе связанные с нервной деятельностью. Некоторые из них связаны с психическими расстройствами; соответствующая отрасль науки получила название нейрохимия.

Успехи в изучении физиологии нервной деятельности позволили с позиций материализма подойти к изучению поведенческих реакций. Так, русский физиолог Иван Петро­вич Павлов (1849—1936) провёл фундаментальные исследова­ния, непосредственно связывающие поведение животных с деятельностью нерв­ной системы. Он изучал вначале нервную регуля­цию секреции пищеварительных соков, а затем — рефлексы вообще.

У голодной собаки при виде пищи выделяется слюна. Это целесообразный рефлекс, так как слюна необходима для смачивания и переваривания пищи. Если каждый раз, когда собаке показывают пищу, од­новременно звенит звонок, то он прочно связывается с видом пищи; в конце концов слюна будет выделять­ся на звонок, даже если собака не видит пищи, то есть у нее выработается условный рефлекс. Павлов доказал, что подобным образом можно выработать различные рефлексы.

Более позднее направление в психологии — бихевио­ризм — утверждает, что всякое обучение является, по существу, развитием условных рефлексов и, если можно так сказать, новых нервных связей. Наиболее известными представителями этой школы в ее край­нем выражении были американские психологи Джон Уотсон (1878—1958) и Баррус Скиннер.

Бихевиоризм выражает крайне механистическое понимание психики, так как низводит все фазы психи­ческой деятельности до элементарных физиологических реакций. По общему мнению, такая поста­новка вопроса является упрощенчеством.

Изучение поведения, инстинктов и способности к обучению, проявляемой животными в природе, полу­чило в середине ХХ в. новое развитие в работах Конрада Лоренцаи Николааса Тинбергена. В итоге возникла новая отрасль биологии — этология, изучающая сложные формы поведения жи­вотных.

 


Лекция № 7

Тема лекции:История молекулярной биологии и генетики

План лекции:

1. Открытие ферментов и коферментов

2. Изучение тонкой структуры белков с помощью физико-химических методов

3. Изучение строения биомолекул методом хроматографии

4. Установление первичной структуры белка

5. Краткая история генетики

6. Установление роли ДНК

7. Открытие двойной спирали ДНК

8. Расшифровка генетического кода

1. Открытие ферментов и коферментов

Процесс обмена веществ, который стал особенно хорошо известен ученым в середине 50-х годов, мож­но считать своеобразным выражением ферментатив­ной природы клетки. Любая метаболическая реакция катализируется благодаря специфическому ферменту; характер обмена веществ определяется природой и концентрацией присутствующих в клетке ферментов. Следовательно, чтобы понять обмен веществ, необхо­димо знать ферменты.

На протяжении ХIХ столетия ферменты считались таинственными веществами, выявляемыми лишь по их действию. Немецкому химику Леонору Михаэлису (1875—1949) удалось раскрыть тайну ферментов с помощью законов и методов химической кинетики (раздела физической химии, изучающего скорость ре­акций). В 1913 г. он установил зависимость скорости реакций, катализируемых ферментами, от определен­ных условий. Он предположил, что фермент образует промежуточное соединение с веществом, реакцию ко­торого он катализирует. Подобное допущение свиде­тельствует о том, что ферменты есть не что иное, как молекулы, подчиняющиеся физико-химическим зако­нам. Но что же это за молекулы? По всей вероятно­сти, это белки, так как ферментный раствор легко те­ряет активность даже при слабом нагревании, а, как известно, такую термолабильность имеют лишь белко­вые молекулы.

Однако все это были лишь предположения. В 20-х годах немецкий химик Рихард Вильштеттер (1872—1942) выдвинул гипотезу, согласно которой ферменты вовсе не являются белками. Правда, как оказалось впоследствии, эта гипотеза была ошибочной, но науч­ный авторитет ее автора долгое время не позволял в ней усомниться. Через несколько лет вопрос о белко­вой природе ферментов был поднят вновь, на сей раз американским биохимиком Джеймсом Самнером (1887—1955). В 1926 г. Самнер выделил из семян мечевидной канавалии фермент, катализирую­щий реакцию расщепления мочевины на аммиак и углекислый газ. В процессе получения фермента уче­ный обнаружил возникновение в определенный мо­мент мельчайших кристаллов. Выделив и растворив эти кристаллы, он получил жидкость с повышенной активностью уреазы. Все попытки отделить эту актив­ность от кристаллов не увенчались успехом. Получен­ные кристаллы оказались ферментами и, как показа­ли опыты Самнера, одновременно и белками. Таким образом, уреаза была не только первым ферментом, полученным в кристаллическом виде, но и первым ферментом с доказанной белковой природой.

Сом­нениям относительно того, распространяется ли эта закономерность на все ферменты, положили конец ис­следования американского биохимика Джона Нортропа. В 1930 г. ученому уда­лось кристаллизовать пепсин — расщепляющий белок фермент желудочного сока; двумя годами позже — трипсин и в 1935 — химотрипсин. Трипсин и химотрипсин — расщепляющие белок ферменты поджелу­дочной железы. Они также оказались белками. После этого ученые получили в кристаллическом виде еще десятки ферментов, и все они были белками.

Артур Харден, открывший в начале ХХ столетия промежуточный обмен веществ, обратил также внима­ние на еще одну сторону ферментативной деятельно­сти. Он поместил в воду дрожжевой экстракт в не­большом мешке из диализирующей мембраны (через которую просачиваются только молекулы малых раз­меров). После того как через стенки мешка вышли мелкие молекулы экстракта, последний уже не мог расщеплять сахар. Объяснить это явление просачива­нием через мембрану самого фермента нельзя, по­скольку вода, в которой находился мешок, также не расщепляла сахара. Однако в соединении с экстрак­том внутри мешка она приобретала эту способность. Следовательно, можно сделать вывод: помимо круп­ных молекул, фермент включает в себя и относитель­но мелкие, непрочно связанные и потому способные просачиваться через мембрану. Эти мелкие молекулы, являющиеся структурной частью фермента и очень важные для его функционирования, получили назва­ние коферментов.

В середине 20-х годов шведский химик Ганс Эйлер обнаружил, что и другие ферменты содержат коферменты, однако структуру последних удалось выяснить лишь десяти­летием позже. Тогда же определили строение витами­нов, после чего уже не вызывало сомнения, что в боль­шинстве коферментов в качестве составной части мо­лекулы имеются витаминоподобные структуры.

Итак, витамины, по-видимому, являются той частью коферментов, которые не вырабатываются са­мим организмом и поэтому должны быть включены в пищу. Без витаминов построение коферментов не­возможно, а без коферментов некоторые ферменты оказываются недеятельными и, таким образом, обмен веществ нарушается. В результате наступает авита­миноз, иногда со смертельным исходом.

Поскольку ферменты и коферменты — это катали­заторы, нужные организму в малых количествах, ви­тамины тоже нужны в столь же небольших количе­ствах. Этим, собственно, и объясняется тот факт, что ничтожнейшие составные части пищи могут оказаться крайне необходимыми для нормальной жизнедеятель­ности организма. Следовые количества таких эле­ментов, как медь, кобальт, молибден, цинк, образуют существенную часть ферментной структуры. Были вы­делены ферменты, содержащие по одному или не­сколько атомов этих элементов.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.