Ранг и базис системы векторов
Определение 1. Рангом системы векторов называется максимальное число линейно независимых векторов (Система векторов называется линейно зависимой, если один из векторов системы можно представить в виде линейной комбинации остальных векторов системы, и линейно независимой - в противном случае) системы.
.
Определение 2. Базисом системы векторов называется максимальная линейно независимая подсистема данной системы векторов.
Теорема. Любой вектор системы можно представить в виде линейной комбинации (Линейной комбинацией системы векторов называется выражение вида
, где с1, с2, …, сk - некоторые числа) векторов базиса системы. (Всякий вектор системы можно разложить по векторам базиса.) Коэффициенты разложения определяются для данного вектора и данного базиса однозначно.
Доказательство.Пусть система имеет базис .
1 случай. Вектор - из базиса. Следовательно, он равен одному из векторов базиса, допустим . Тогда = .
2 случай. Вектор - не из базиса. Тогда r>k.
Рассмотрим систему векторов . Данная система является линейно зависимой, так как - базис, т.е. максимальная линейно независимая подсистема. Следовательно, найдутся числа с1, с2, …, сk, с, не все равные нулю, такие, что = . Очевидно, что (если с=0, то базис системы является линейно зависимым). .
Докажем, что разложение вектора по базису единственно. Предположим противное: имеется два разложения вектора по базису.
= , = .
Вычитая эти равенства, получим .
Учитывая линейную независимость векторов базиса, получим .
Следовательно, разложение вектора по базису единственно.
Количество векторов в любом базисе системы одинаково и равно рангу системы векторов.
Вычисление ранга системы векторов можно свести к вычислению ранга матрицы. Т.к. ранг системы векторов равен рангу матрицы, столбцами (строками) которой являются векторы этой системы.
Пример. Найти ранг системы векторов
Составим матрицу из координат векторов и найдем ее ранг.
~ ~ ~
~ , r(А)=3, =1¹0.
Ранг данной системы векторов равен трем, т.е. она имеет три линейно независимых вектора.
Системы линейных уравнений
Определение:Системой линейных уравнений с неизвестными называется система уравнений вида
| (1)
| Систему (1) можно записать также в виде
или в виде
Но наиболее удобной формой записи системы (15.1) является матричная запись. Введем следующие матрицы: матрица системы , столбец неизвестных и столбец свободных членов ,
с помощью введенных обозначений систему (1) можно записать в виде
Однородная, неоднородная СЛАУ. Система уравнений называется однородной, если и неоднородной в противном случае.
Совместная, несовместная СЛАУ.
Система называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
Определённая, неопределённая СЛАУ.
Если СЛАУ имеет решение и при том единственное, то её называют определённой а если решение неединственное – то неопределённой.
МАТРИЧНЫЕ УРАВНЕНИЯ
Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:
Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов
Найдем произведение
т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде
или короче A∙X=B.
Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.
Пусть определитель матрицы отличен от нуля |A| ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A: . Поскольку A-1A = E и E∙X = X, то получаем решение матричного уравнения в виде X = A-1B.
Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных.
Формулы Крамера
Метод Крамера состоит в том, что мы последовательно находим главный определитель системы, т.е. определитель матрицы А : D = det (ai j) и n вспомогательных определителей D i (i= ), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.
Формулы Крамера имеют вид: D × x i = D i (i = ).
Из этого следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы: если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам: x i = D i / D.
Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
Теорема (правило Крамера): Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём
Доказательство: Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:
Сложим эти уравнения:
Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца .
Далее рассмотрим коэффициенты при x2:
Аналогично можно показать, что и .
Наконец несложно заметить, что
Таким образом, получаем равенство: . Следовательно, .
Аналогично выводятся равенства и , откуда и следует утверждение теоремы.
Теорема Кронекера - Капелли.
Система линейных уравнений является совместной тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы .
Доказательство: Оно распадается на два этапа.
1. Пусть система имеет решение. Покажем, что .
Пусть набор чисел является решением системы. Обозначим через -ый столбец матрицы , . Тогда , то есть столбец свободных членов является линейной комбинацией столбцов матрицы . Пусть . Предположим, что . Тогда по . Выберем в базисный минор . Он имеет порядок . Столбец свободных членов обязан проходить через этот минор, иначе он будет базисным минором матрицы . Столбец свободных членов в миноре является линейной комбинацией столбцов матрицы . В силу свойств определителя , где -- определитель, который получается из минора заменой столбца свободных членов на столбец . Если столбец проходил через минор M, то в , будет два одинаковых столбца и, следовательно, . Если столбец не проходил через минор , то будет отличаться от минора порядка r+1 матрицы только порядком столбцов. Так как , то . Таким образом, , что противоречит определению базисного минора. Значит, предположение, что , неверно.
2. Пусть . Покажем, что система имеет решение. Так как , то базисный минор матрицы является базисным минором матрицы . Пусть через минор проходят столбцы . Тогда по теореме о базисном миноре в матрице столбец свободных членов является линейной комбинацией указанных столбцов:
| (1)
|
Положим , , , , остальные неизвестные возьмем равными нулю. Тогда при этих значениях получим
В силу равенства (1) . Последнее равенство означает, что набор чисел является решением системы. Существование решения доказано.
В рассмотренной выше системе , и система является совместной. В системе , , и система является несовместной.
Замечание:Хотя теорема Кронекера-Капелли дает возможность определить, является ли система совместной, применяется она довольно редко, в основном в теоретических исследованиях. Причина заключается в том, что вычисления, выполняемые при нахождении ранга матрицы, в основном совпадают с вычислениями при нахождении решения системы. Поэтому, обычно вместо того, чтобы находить и , ищут решение системы. Если его удается найти, то узнаем, что система совместна и одновременно получаем ее решение. Если решение не удается найти, то делаем вывод, что система несовместна.
Не нашли, что искали? Воспользуйтесь поиском по сайту:
©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.
|