Сделай Сам Свою Работу на 5

ОБЩИЙ ХАРАКТЕР ДИАЛЕКТИКИ КАК НАУКИ 2 глава





 

 

возвращаются к своей пассивности, после того как развернута цепь, удерживающая груз. Следовательно, если согласно новейшему воз-зрению, как мы только что видели, энергия является только другим выражением для отталкивания, то здесь согласно более старому, гельмгольцеву, воззрению, сила является другим выражением для противоположности отталкивания, для притяжения. Мы ограничи-ваемся пока констатированием этого факта.

Но когда процесс земной механики достиг своего конца, когда поднятая первая тяжелая масса упала обратно, опустившись на ту же самую высоту, то что становится с движением, составлявшим этот процесс? Для чистой механики оно исчезло. Однако теперь мы знаем, что оно вовсе не уничтожилось. В меньшей своей части оно превра-тилось в звуковые волнообразные колебания воздуха, в значительно большей части—в теплоту, которая сообщилась отчасти оказываю-щей сопротивление атмосфере, отчасти самому падающему телу, от-части, наконец, участку почвы, на которой установлен часовой меха-низм. Груз также постепенно передал свое движение в виде теплоты от трения отдельным колесикам часового механизма. Но не движе-ние падения, как обыкновенно выражаются, т. е. не притяжение, пе-решло в теплоту, т. е. некоторую форму отталкивания. Напротив, притяжение, тяжесть, остается, как правильно замечает Гельмгольц, тем же, чем оно было раньше, и даже выражаясь точно, становится больше. Скорее падением механически уничтожается сообщенное поднятому телу благодаря подниманию его, отталкивание, которое затем восстаналивается в качестве теплоты. Молярное отталкива-ние превратилось в молекулярное отталкивание.



Теплота представляет собой, как мы уже сказали, особую форму отталкивания. Она приводит молекулы тела в колебание и этим осла-бляет связь отдельных молекул, пока наконец не наступает пере-ход в жидкое состояние: если продолжается приток тепла, то оно и в этом состоянии увеличивает движение молекул до тех пор, пока они совершенно не оторвутся от массы и не начнут свободно двигаться с определенной, обусловленной для каждой молекулы ее химическим составом скоростью. При продолжающемся притоке тепла оно уве-личивает еще более эту скорость, отталкивая таким образом молекулы все дальше друг от друга.



<Если таким образом движение массы по направлению силы тяжести превратилось в молекулярное движение в форме теплоты, то это, другими словами, значит: притяжение превратилось в оттал-кивание, в свою прямую противоположность.>

Но теплота есть разновидность так называемой «энергии»; таким образом последняя и здесь оказывается тожественной с отталки-ванием.

В явлениях статического электричества и магнетизма мы имеем полярное распределение притяжения и отталкивания. Какую бы гипотезу ни составить насчет modus operandi обеих этих форм дви-жения, никто, считающийся с фактами, не усомнится в том, что при-тяжение и отталкивание – поскольку они вызваны статическим электричеством или магнетизмом и поскольку они могут свободно обнаруживаться – вполне компенсируют друг друга, что впрочем следует с необходимостью из самой природы полярного распределе-ния. Два полюса, которые не компенсировали бы вполне друг друга

 

 

в своих проявлениях, не были бы вовсе полюсами; поэтому они до сих пор и не встречались в природе. Явления гальванизма мы оста-вим пока в покое, ибо здесь процесс обусловливается химическими явлениями, становясь, благодаря этому, более сложным. Обратимся поэтому лучше к изучению самих химических процессов движения.

Если две весовых части водорода соединяются с 15,96 весовой части кислорода, образуя водяной пар, то при этом развивается ко-личество теплоты, равное 68,924 единицы теплоты. Наоборот, разло-жение 17,96 весовой части водяного пара на 2 весовых части водорода и 15,96 весовой части кислорода возможно лишь при том условии, что водяному пару сообщается количество движения, эквивалентное 68,924 единицы теплоты, – безразлично, в форме ли самой теплоты или электрического движения. То же самое относится ко всем хими-ческим процессам. В огромном большинстве случаев при химиче-ских соединениях выделяется движение, при разложениях сообща-ется движение. И здесь отталкивание представляет обыкновенно активную сторону процесса, более наделенную движением или тре-бующую притока движения, а притяжение – пассивную сторону его, делающую излишним движение и выделяющую его. Поэтому современная теория и заявляет, что вообще при соединении элемен-тов энергия высвобождается, при разложении же их – связывается. Термин «энергия» здесь опять-таки употребляется вместо «отталки-вание». И опять-таки Гельмгольц заявляет: «Эту силу (силу химичеческого сродства) мы можем представить себе как силу притяжения... Эта сила притяжения между атомами углерода и кислорода произ-водит точно так же работу, как сила, которую обнаруживает земля в виде действия тяжести на поднятый груз... Когда атомы углерода и кислорода набрасываются друг на друга и соединяются в углеки-слоту, то новообразовавшиеся частицы углекислоты должны нахо-диться в крайне бурном молекулярном движении, т. е. тепловом дви-жении... Когда в дальнейшем углекислота отдаст свою теплоту окру-жающей среде, то мы все еще имеем в углекислоте весь углерод, весь кислород, а также силу сродства обоих в тех же размерах, что и раньше. Но эта сила сродства обнаруживается теперь лишь в том, что она крепко связывает между собою атомы углерода и кислорода, не допуская разделения их» (1. с., стр. 169). Мы здесь замечаем то же, что и раньше: Гельмгольц настаивает на том, что в химии, как и в механике, сила заключается только в притяжении и следовательно является антиподом того, что у других физиков называется энергией и что тожественно с отталкиванием.



<Тем самым исчерпаны формы движения в неорганической при-роде, поскольку нам это позволяет современная наука.>

Таким образом мы имеем теперь не обе простые основные формы притяжения и отталкивания, а целый ряд подчиненных форм, в кото-рых совершается процесс универсального движения, развертываю-щийся в противоположности притяжения и отталкивания. Но, под-водя эти многообразные формы под одно общее название движения, мы исходим вовсе не из априорных требований нашего разума. Напротив, факты опыта показывают, что они являются формами одного и того же движения, ибо при известных обстоятельствах они переходят друг в друга. Механическое молярное движение пере- ходит в теплоту, в электричество, в магнетизмм; теплота и электри-

 

 

чество переходят в химическое разложение; с своей стороны: хими-ческое соединение порождает опять-таки теплоту и электричество, а через посредство последнего – магнетизм; и, наконец, теплота и электричество в свою очередь производят механическое молярное движение. И происходит это таким образом, что определенному коли-честву движения одной формы всегда соответствует точно определен-ное количество движения другой формы, причем опять-таки безраз-лично, из какой формы движения заимствована единица меры, кото-рой измеряется это количество движения, т. е. служит ли она для измерения молярного движения, так называемой электродвижущей силы, или же превращающегося при химических процессах движения.

Здесь мы стоим на почве, созданной Ю. Р. Майером в 1842 г. * и разработанной с тех пор с таким блестящим успехом учеными всех стран теории «сохранения энергии», и нам остается только исследо-вать основные представления, которыми ныне оперирует эта теория. Это – представление о силе, или «энергии» и о «работе».

Мы уже видели, что современное, теперь довольно общерас-простра-ненное воззрение понимает под энергией отталкивание, между тем как Гельмгольц употребляет слово «сила» преимущественно для обозначения притяжения. Можно было бы думать, что это какое-то формальное, несущественное различие, так как ведь притяжение и отталкивание компенсируются во вселенной и поэтому безразлично, какую сторону отношения принять за положительную и какую – за отрицательную, подобно тому как совершенно безразлично, будем ли мы отсчитывать на известной прямой от какой-нибудь точки по-ложительные абсциссы направо или налево. Но в действительности это не совсем так.

Дело в том, что у нас речь идет здесь прежде всего не о вселенной, а о явлениях, имеющих место на земле и обусловленных вполне опре-деленным положением земли в солнечной системе и солнечной систе-мы во вселенной. Но наша солнечная система излучает в каждое мгновение колоссальные количество движения в мировое простран-ство, и притом движения вполне определенного рода, именно солнеч-ную теплоту, т. е. отталкивание. А сама наша земля живет только благодаря солнечной теплоте и, со своей стороны, излучает получен-ную солнечную теплоту в конце концсв тоже в мировое пространство

* В «Pop. Vorles.» II, стр. 113, Гельмгольц приписывает невидимому, кроме Майера, Джоуля и Кольдинга, и себе самому, известную роль в естественно-на-учном доказательстве теоремы Декарта о неизменности количества движения в мире. «Сам я, не зная ничего о Майере и Кольдинге и ознакомившись с опытами Джоуля лишь в конце своей работы, вступил на тот же самый путь: я старался в особенности определить все отношения между различными физическими про-цессами, вытекающими из указанной точки зрения, и опубликовал свои исследова-ния в 1847 г. в маленьком сочинении под названием: «О сохранении силы» [Под-черкнуто Энгельсом.] Но в этом сочинении не нагодится ровно ничего нового для уровня науки в 1847 г., за исключением упомянутого выше математического – впрочем весьма ценного – доказательства, что «сохранение силы» и центральное действие сил, действующих между различными телами какой-нибудь системы, являются лишь двумя различными выражениями одной и той же вещи и, далее, более точной формулировкой закона, что сумма живых сил и сил напряжения в некоторой данной механической системе постоянна. Во всем остальном вторая работа Майера от 1845 г. уже опередила это сочинение Гельмгольца. Уже в 1842 г.Майер утверждал «нерушимость силы», а в 1845 г. он, исходя из своей новой точки зрения, сумел сообщить гораздо более гениальные вещи об «отношениях между различными физическими процессами», чем Гельмгольц в 1847г.

 

 

после того как она превратила часть ее в другие формы движения. Таким образом в солнечной системе, а в особенности на земле, при-тяжение имеет уже значительный перевес над отталкиванием. Если бы мы не получали излучаемого Солнцем движения отталкивания, то на земле прекратилось бы всякой движение. Если бы солнце застыло завтра, то при прочих равных условиях притяжение осталось бы на земле тем же, чем оно является в настоящее время. Камень, весом в сто килограммов, продолжал бы попрежнему весить эти сто килограммов на том месте, где он лежит. Но зато движение, как масс, так и молекул и атомов, заменилось бы состоянием абсолют-ного, с нашей точки зрения покоя. Таким образом ясно, что для процессов, совершающихся на нашей нынешней земле, совершенно не безразлично, станем ли мы рассматривать притяжение или оттал-кивание как активную сторону движения, т. е. как силу, или энергию. На нынешней земле, наоборот, притяжение благодаря своему реши-тельному перевесу над отталкиванием стало уже совершенно пассив-ным: всем активным движением мы обязаны притоку отталкивания от солнца. Поэтому-то новейшая школа по существу вполне права с точки зрения земных процессов и даже с точки зрения всей солнеч-ной системы, если она рассматривает энергию как отталкивание, хотя бы она не отдавала себе вполне отчета в природе самого дви-жения.

Термин «энергия» отнюдь не выражает правильно всего явления движения, ибо он подчеркивает только одну сторону его – действие, но не противодействие. Кроме того он способен вызвать мысль о том, будто «энергия» есть нечто внешнее для материи, нечто привитое ей, но во всяком случае он заслуживает предпочтения перед выраже-нием «сила».

Представление о силе заимствовано, как это признается всеми (начиная от Гегеля и кончая Гельмгольцем), из проявлений деятель-ности человеческого организма по отношению к окружающей его среде. Мы говорим о мускульной силе, о поднимающей силе рук, о прыгательной силе ног, о пищеварительной силе желудка и кишеч-ного тракта, о силе ощущения нервов, о секреторной силе желез

и т. д. Иными словами, чтобы избавиться от необходимости указать реальную причину изменения, вызванного какой-нибудь функцией нашего организма, мы сочиняем некоторую фиктивную причину, соот--ветствующую этому изменению, и называем ее силой. Мы переносим затем этот удобный метод и во внешний мир и таким образом сочи-няем столько же сил, сколько существует различных явлений.

Естествознание (за исключением разве небесной и земной меха-ники) находилось на этой наивной ступени развития еще во вре-мена Гегеля, с полным правом выступавшего против тогдашней ма-неры придумывать повсюду силы (процитировать соответствующее место) [143]. Точно так же он замечает и в другом месте: «Лучше ска-зать, что магнит (как выражается Фалес) имеет душу, чем что он имеет силу притягивать; сила —это такое свойство, которое как отдели-мое от материи представляет себя в виде предиката, душа же – это движение себя, одно и то же вместе с природой материи» (Geschi-chte d. Philosophic, I, стр. 208).

Теперь мы не так легко оперируем силами, как в те времена. Послушаем Гельмгольца: «Если мы вполне знаем какой-нибудь за-

 

 

кон природы, то мы должны требовать признания его без исключе-

ния… Таким образом закон представляется нам в виде некоторой

объективной мощи, и поэтому мы называем его силой. Так например мы объективируем закон преломления как некоторую силу пpе- ломления света прозрачных веществ, закон химического сродства как силу сродства между собою различных веществ. Точно так же MЫ говорим об электрической контактной силе металлов, о силе прилипания, капиллярной силе и т. д. В этих наименованиях объективированы законы, охватывающие сперва небольшие ряды физических процессов, условия которых еще довольно запутаны... * Сила – это только объективированный закон действия... Абстрактное понятие силы, выставляемое нами, прибавляет к этому еще лишь мысль о том, что мы не сочинили произвольно этого закона, что он предста-вляет собой принудительный закон явлений. Таким образом наше требование понять явления природы, т. е. найти их законы, прини-мает другой вид, сводится к требованию отыскивать силы, предста-вляющие собой причины явлений» (I, с., стр. 190). Доклад на инсбрукском съезде естествоиспытателей в 1869 г.) [144].

Заметим прежде всего, что очень своеобразен способ «объективи-рования», сводящийся к тому, что вносят чисто субъективное пред-ставление о силе в некий, – установленный как независимый от нашей субъективности и следовательно уже вполне объективный, – закон природы. Подобную вещь мог бы позволить себе в лучшем слу-чае какой-нибудь правовернейший старогегельянец, а не неокан-тианец вроде Гельмгольца. К установленному раз закону и к его объ-ективности или же к объективности его действия не прибавляется ни малейшей новой объективности оттого, что мы подставим на его ме-сто некую силу; здесь присоединяется лишь наше субъективное утвер-ждение, что этот закон действует при помощи некоторой, пока еще совершенно неизвестной силы. Но тайный смысл этой подстановки открывается перед нами тогда, когда Гельмгольц начитает приводить свои примеры – преломление света, химическое сродство, контакт-ное электричество, прилипание, капиллярность – и возводит законы, управляющие этими явлениями, в «объективное» дворянское сословие сил. «В этих наименованиях объективированы законы, охватываю-щие сперва небольшие ряды физических процессов, условия которых, еще довольно запутаны». – И именно здесь «объективирование», являющееся скорее субъективированием, приобретает известный смысл: мы ищем прибежище в слове «сила» не потому, что мы вполне познали закон, но именно потому, что мы его не познали, потому, что мы еще не выяснили себе «довольно запутанных условий» этих явлений. Таким образом прибегая к понятию силы, мы выражаем не наше знание, а наше отсутствие знания природы закона и способа его действия. В этом смысле, в виде краткого выражения еще непо-знанной причиной связи, в виде уловки языка, он может перейти в обычное употребление. Что сверх того, то от лукавого. С тем же пра-вом, с каким Гельмгольц объясняет физическое явление из так называемой силы преломления света, электрической контактной силы и т. д., средневековые схоластики объясняли температурные изменения из vis calorifica и vis frigifaciens, избавляя себя таким

* [Подчеркнуто Энгельсом ]

 

 

образом от необходимости всякого дальнейшего изучения явлений теплоты.

Но и в этом смысле рассматриваемое выражение неудачно, вы- ражая все явления односторонним образом. Все процессы в природе двусторонни, основываясь на отношении между, по меньшей мере, двумя действующими частями, основываясь на действии и противо-действии. Между тем представление о силе благодаря своему проис-хождению из действия человеческого организма на внешний мир и, далее, из земной механики, предполагает мысль о том, что только одна часть – активно действенная, другая же – пассивно воспри-нимающая и таким образом устанавливает пока еще недоказанное распространение половой полярности на неорганическую природу. Противодействие второй части, на которую действует сила, является здесь в лучшем случае в качестве чего-то пассивного, в качестве со-противления. Правда, эта концепция применима в целом ряде обла-стей и помимо чисто механики, – именно там, где дело идет о про-стом перенесении движения и количественном вычислении его. Но ее уже недостаточно в более сложных физических процессах, как это доказывают собственные примеры Гельмгольца. Сила преломле-ния света заключается столь же в самом свете, сколько в прозрач-ных телах. В случае явлений прилипания и капиллярности сила за-ключается безусловно столько же в твердой поверхности, сколько в жидкости. Относительно контактного электричества можно во вся-ком случае с уверенностью утверждать, что здесь играют роль оба металла, а «сила химического сродства» заключается во всяком слу-чае в обеих соединяющихся частях. Но сила, состоящая из двух раздельных сил, действие, не вызывающее своего противодействия, а заключающее и несущее его в себе самом, – не есть вовсе сила в смысле земной механики, этой единственной науки, в которой дей-ствительно знают, что означает слово «сила». Ведь основными усло-виями земной механики являются, во-первых, отказ исследовать причины импульса, т. е. природу соответственной в каждом случае силы, а во-вторых, представление об односторонности силы, которой противопоставляется некоторая равная всегда себе в любом месте тяжесть, так что, по сравнению с любым пространством, проходимым падающим на земле телом, радиус земного шара равен бесконечности.

Но пойдем дальше и посмотрим, как Гельмгольц «объективирует» свои «силы» в законы природы.

В одном докладе, в 1854 г. (1. с., стр. 119) [145], он исследует «за-пас рабочей силы», который содержал в себе первоначально туманный шар, давший начало нашей солнечной системе. «Действительно, этот шар получил колоссальный запас рабочей силы в форме всеобщей силы притяжения всех его частей друг к другу». Это бесспорно. Но столь же бесспорно и то, что все это приданное из тяжести или тяго-тения сохраняется в неущербленном виде и в теперешней солнечной системе, за исключением разве незначительной части его, утерянной с материей, которая, может быть, была выброшена безвозвратным образом в мировое пространство. Далее: «И химические силы должны были уже быть налицо, готовые к действию; но так как эти силы мо-гут действенно проявиться лишь при самом тесном соприкосновении разнородных масс, то прежде чем началась их работа, должно было произойти сгущение» [146]. Если мы вместе с Гельмгольцем (см. выше)

 

 

станем рассматривать эти химические силы как силы сродства, т.е.

как притяжение, то мы должны будем и здесь сказать, что совокуп-ная сумма этих сил химического притяжения сохраняется неумален-ной и в теперешней солнечной системе.

Но на той же самой странице Гельмгольц приводит в качестве результата своих выкладок, что в солнечной системе «имеется лишь примерно 1/454 доля первоначальной механической силы как тако-рой». Как согласовать это? Ведь сила притяжения – как всеобщая, так и химическая—сохранилась в нетронутом виде в солнечной системе. Другого определенного источника силы Гельмгольц не ука-зывает. Правда, согласно Гельмгольцу, его силы произвели колос-сальную работу. Но от этого они ни увеличились, ни уменьшились. 0 каждой молекуле в солнечной системе, как и о всей солнечной си-стеме, можно сказать то же самое, что о часовом грузе в вышеприве-денном примере: «Его тяжесть не пропала и не уменьшилась». Все химические элементы испытывают то же, что углерод и кислород, рассмотренные нами выше: вся масса каждого элемента сохраняется, и точно так же «остается в прежних размерах сила сродства». Что же мы потеряли? И какая «сила» произвела колоссальную работу, кото-рая в 453 раза больше, чем та, которую может еще произвести, по его вычислению, солнечная система? На это мы не имеем никакого от- вета у Гельмгольца. Но дальше мы читаем у него:

«Мы не знаем, имелся ли еще другой запас силы в виде теплоты». С позволения Гельмгольца мы заметим следующее: теплота есть оттал-кивательная «сила» и следовательно действует в направлении об-ратном направлению тяжести и химического притяжения. Она есть минус, если последние принимать за плюс. Поэтому, если Гельм-гольц составляет свой первоначальный запас силы из всеобщего притяжения и химического притяжения то имеющийся помимо этого запас теплоты должен был бы быть не прибавлен к нему, а вычтен из него. В противном случае нужно было бы утверждать, что солнечная теплота увеличивает силу притяжения земли, когда она, вопреки ей, превращает воду в пары и поднимает эти пары вверх;

или же —что теплота раскаленной железной трубки, через которую проходят водяные пары, усиливает химическое притяжение кисло-рода и водорода, между тем как она, наоборот, уничтожает его. Или же *, выражая это самое отношение иным, более конкретным образом: допустим, r3, имеет температуру t. Допустим,pчто туманный шар радиуса r, т. е. объем 4/3 далее, что другой туманный шар, равной массы, имеет при более высокой R3. Ясно, что во втором туманномpтемпературе T больший ра-диус R и объем 4/3 шаре притяже-ние – как механическое, так физическое и химическое—лишь тогда

сможет начать действовать с той же силой, как в первом, когда он сократится и вместо радиуса R станет радиус r, т. е., когда соответ-ствующая разница температур T— t, теплота, будет излучена в ми-ровое пространство. Таким образом более теплый туманный шар сгустится позже, чем более холодный, и следовательно теплота, являясь препятствием для сгущения, оказывается, с точки зрения Гельмгольца, не плюсом, а минусом «запаса сиды». Гельмгольц, предполагая возможность в виде теплоты некоторого количества

* [От «Или же» до «запаса силы» добавлено на полях.]

 

 

отталкивательного движения, присоединяющегося к притягательным формам движения и увеличивающего их сумму, совершает безуслов-но ошибку в своих выкладках.

Придадим же всему этому «запасу силы» – как опытно доказуе-мому, так и теоретически возможному – один и тот же знак для того чтобы можно было совершить сложение. Так как в настоящее время мы еще не в состоянии обратить теплоты, не в состоянии за-менить ее отталкивание эквивалентным притяжением, то нам придет-ся совершить это обращение для обеих форм притяжения. В таком случае мы должны взять вместо силы всеобщего притяжения, вместо силы химического сродства и вместо существовавшей, возможно, уже первоначально теплоты как таковой, просто сумму имевшегося в га-зовом шаре, в момент его образования, отталкивательного движения, или так называемой энергии. С этим согласуется и вычисление Гельм-гольца, когда он вычисляет «согревание», получившееся благодаря гипотетическому первоначальному сгущению тел нашей системы из рассеянного туманного вещества. Сведя таким образом весь «запас сил» к теплоте, к отталкиванию, он делает возможным приба-вить к этому гипотетический «запас силы теплоты». А в таком случае произведенное им вычисление выражает тот факт, что453/454 всей имевшейся первоначально в газовом шаре энергии, т. е. отталкива-ния, было излучено в виде теплоты в мировое пространство или же, выражаясь точнее, что сумма всего притяжения в современной солнеч-ной системе относится к сумме всего имеющегося в ней отталкива-ния, как 454 : 1. Но в таком случае эти выкладки противоречат тексту доклада, к которому они приложены.

Но если представление силы приводит даже у такого физика, как Гельмгольц, к подобной путанице понятий, то это является лучшим доказательством того, что оно вообще не может найти научного при-менения во всех областях исследования, выходящих из рамок вы-числительной механики. В механике принимают причины движения за данное и не интересуются их происхождением, считаясь только с их действиями. Поэтому если какую-нибудь причину движения на-зывают силой, то это нисколько не вредит механике как таковой;

но благодаря этому привыкают переносить это наименование также и в область физики, химии и биологии, что приводит к неизбежной путанице. Мы уже видели это и увидим еще не один раз *. О поня-тии работы мы будем говорить в следующей главе.

 

* [ Этот абзац и последующее предложение дополнительно приписаны.

Первоначально здесь стояло: «Работа: развить перенесение движения и его форм

Резюме». ]

 

МЕРА ДВИЖЕНИЯ—РАБОТА

 

«Напротив, я до сих пор всегда находил, что основные понятия этой области (т. е. «основные физические понятия работы и неиз-менности ее») с большим трудом даются тем лицам, которые не про-шли через школу математической механики, несмотря на все усердие с их стороны, на все их способности и даже на довольно высокий уровень естественно-научных знаний. Не следует забывать того, что это абстракции совершенно особого рода. Ведь понять их удалось не без труда даже такому крупному мыслителю, как И. Кант, о чем свидетельствует его полемика с Лейбницем». Так говорит Гельмгольц (Pop.-wiss. Vortr., II, Vorrede) [147].

Таким образом мы вступаем в очень опасную область, тем более что <из-за недостатка времени и места> мы не можем провести чи-тателя через школу математической механики. Но, может быть, удастся показать, что там, где дело идет о понятиях, диалектиче-ское мышление приводит по меньшей мере к таким же плодотворным результатам, как и математические выкладки.

Галилей открыл, с одной стороны, закон падения, согласно ко-торому пройденные падающими телами пространства пропорцио-нальны квадратам времени падения. Но наряду с этим он установил не вполне соответствующее, как мы увидим, этому закону положе-ние, что количество движения какого-нибудь тела (его impeto или momento) определяется массой и скоростью, так что при постоянной массе оно пропорционально скорости. Декарт принял эту последнюю теорему и признал вообще произведение массы движущегося тела на скорость мерой его движения. <И даже теперь можно встретить то же самое в известных руководствах. Так, например, у Томпсона и Тета (A. Treatise, on Natural Philosophy etc. London and Oxford 1867, p. 162) «количество движения или момент твердого тела, движуще-гося без вращения, пропорционально произведению его массы на скорость. Двойная масса или двойная быстрота, соответствует двой-ному количеству движения и так далее»> [148].

Гюйгенс нашел уже, что в случае упругого удара сумма произ-ведений масс на квадраты скорости остается неизменной до удара и после него и что аналогичный закон имеет силу для различных дру-гих случаев движения соединенных в одну систему тел.

Лейбниц первый заметил, что декартова мера движения противо-речит закону падения. Но, с другой стороны, нельзя было отрицать того, что декартова мера оказывается во многих случаях правильной. Поэтому Лейбниц разделил движущие силы на мертвые и живые. Мертвыми силами были «давления» или «натяжения» покоящихся тел; за меру их он принимал произведение из массы на скорость, с которой двигалось бы тело, если бы из состояния покоя оно пере-

шло в состояние движения; за меру же живой силы – реального дви-

 

 

жения тела – он принял произведение из массы на квадрат скорости. Эту новую меру движения он вывел непосредственно из закона падения. «Необходима, – рассуждал Лейбниц, – одна и та же сила как для того, чтобы поднять тело весом в четыре фунта на один фут, так и для того, чтобы поднять тело весом в один фунт на четыре фута. Но пути пропорциональны квадрату скорости, ибо если тело упало на четыре фута, то оно приобрело двойную скорость по срав-нению с той скоростью, которую оно имеет, когда падает на один фут. Но при своем падении тела приобретают силу, с помощью кото-рой они могут подняться на ту же самую высоту, с которой упали;

следовательно силы пропорциональны квадрату скорости» (Suter, Geschichte der Math., II, стр. 367) [149]. Но далее он доказал, что мера движения mv противоречит декартовой теореме о постоянстве ко-личества движения, ибо если бы она была действительно верна, то сила (т. е. сумма движения) постоянно увеличивалась бы или умень-шалась бы в природе. Он даже набросал проект аппарата (1690, Acta Eruditorum), который – будь мера mv правильной – представлял бы perpetuum mobile, дающий постоянно новую силу, что нелепо. В наше время Гельмгольц неоднократно прибегал к этому аргу-менту.

Картезианцы протестовали из всех своих сил, и тогда загорелся знаменитый, длившийся много лет спор, в котором принял участие в первом своем сочинении (Gedanken von der wahren Schatzung der lebendigen Krafte, 1746) И. Кант, хотя он и неясно разбирался в вопросе. Современные математики относятся с изрядной дозой презрения к этому «бесплодному» спору, который «затянулся больше чем на сорок лет, расколов математиков Европы на два враждеб-ных лагеря, пока наконец Даламбер своим Traite de dynamique (1743) точно каким-то заклинанием не положил конец этой беспо-лезной словесной грызне, к которой собственно сводилось все дело» (Suter, I. с., стр. 366) [150].

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.