Сделай Сам Свою Работу на 5

Растворы. Виды растворов. Понятие об идеальном растворе. Способы выражения концентрации растворов. Давление пара растворителя над раствором. Закон Рауля. Законы Дальтона, Генри, Сеченова.





Растворы - гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же агрегатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке - растворенным веществом.

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы.

Газообразными растворами являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жидкостей и твердых тел с жидкостями.

Твердыми растворами являются многие сплавы, например, металлов друг с другом, стёкла.

Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наиболее распространенным растворителем из неорганических веществ является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол, четыреххлористый углерод и др.

В процессе растворения частицы (ионы или молекулы) растворяемого вещества под действием хаотически движущихся частиц растворителя переходят в раствор, образуя в результате беспорядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие - в ограниченных (хлорид натрия и вода).



По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным (концентрация насыщенного раствора (растворимость) для данного вещества при строго определенных условиях (температура, растворитель) - величина постоянная), а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным.



Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, называется пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблюдается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор становится насыщенным.

Разбавленные растворы - растворы с небольшим содержанием растворенного вещества; концентрированные растворы - растворы с большим содержанием растворенного вещества.

Сравнивая растворимость различных веществ, насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ - довольно концентрированными.

В зависимости от того, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов заключается в том, что они проводят электрический ток.

Идеальными растворами называют растворы, в которых предполагается отсутствие взаимодействий между частицами составляющих веществ, а химический потенциал каждого компонента имеет простую зависимость от концентрации. Для идеальных растворов энтальпия смешения и изменения объема при смешении равны нулю.

Концентрация раствора –число, показывающее, сколько растворенного вещества содержится в весовой или объёмной единице раствора.



Процентная концентрация.

Массовая процентная концентрация показывает какое количество вещества в граммах содержится в 100 г раствора.

Объемная процентная концентрация показывает, какой объем вещества содержится в 100 мл раствора.

2. Молярная концентрация показывает какое количество молей вещества содержится в 1 литре раствора.

Для определения числа молей вещества необходимо вес этого вещества разделить на вес одного моля этого вещества.

3. Нормальная концентрация показывает какое количество грамм -эквивалентов вещества содержится в 1 литре раствора .

Для определения числа грамм-эквивалентов вещества необходимо вес этого вещества разделить на вес одного грамм-эквивалента этого вещества.

Грамм-эквивалент - это такое количество вещества, которое взаимодействует с одним грамм-атомом водорода.

4. Моляльная концентрация показывает какое количество молей вещества содержится в 1000 граммов растворителя .Концентрацию веществ в растворах можно выразить разными способами. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.

Массовая доля растворённого вещества - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора:

w(B)= m(B) / m

Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах.

Молярная концентрация показывает, сколько моль растворённого вещества содержится в 1 литре раствора.

C(B) = n(B) / V = m(B) / (M(B) · V),

М(B) - молярная масса растворенного вещества г/моль.

Молярная концентрация измеряется в моль/л и обозначается "M".

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.

Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.

Эоснования = Моснования / число замещаемых в реакции гидроксильных групп

Экислоты = Мкислоты / число замещаемых в реакции атомов водорода

Эсоли = Мсоли / произведение числа катионов на его заряд

Величины нормальности обозначают буквой "Н".

При данной температуре давление насыщенного пара над каждой жидкостью — величина постоянная. При растворении в жидкости какого-либо вещества давление насыщенного пара этой жидкости понижается. Таким образом, давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре. Разность между этими величинами - понижение давления пара над раствором (или понижением давления пара раствора). Отношение величины этого понижения к давлению насыщенного пара над чистым растворителем называется относительным понижением давления пара над раствором.

Относительное понижение давления пара над раствором представляет собой:

(p0-p)/p0

В 1887 г. французский физик Рауль, изучая растворы различных нелетучих жидкостей и веществ в твердом состоянии, установил закон, связывающий понижение давления пара над разбавленными растворами неэлектролитов с концентрацией& Относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества.

Математическим выражением закона Рауля является уравнение:

(p0-p)/p0 = N2

N2 - молярная доля растворенного вещества.

Явление понижения давления насыщенного пара над раствором вытекает из принципа Ле Шателье. Представим себе равновесие между жидкостью, например, водой, и ее паром. Это равновесие, которому отвечает определенное давление насыщенного пара, можно выразить уравнением

(H20)жидк <=> (H2O)пар

Если теперь растворить в воде некоторое количество какого-либо вещества, то концентрация молекул воды в жидкости понизится и пойдет процесс, увеличивающий ее, — конденсация пара. Новое равновесие установится при более низком давлении насыщенного пара.

Согласно закону Рауля, давление водяного пара над водным раствором ниже, чем над водой. Поэтому кривая кипения для раствора лежит ниже, чем для воды. При переходе от воды к раствору изменяется также положение кривой плавления. И кривая кипения, и кривая плавления раствора расположены тем дальше от соответствующих кривых воды, чем концентрированнее раствор.

Растворение газов в жидкостях почти всегда сопровождается выделением теплоты. Поэтому растворимость газов с повышением температуры согласно принципу Ле Шателье понижается.

Если газ малорастворим в данной жидкости и давление невелико, то растворимость газа пропорциональна его давлению. Эта зависимость выражается законом Генри (1803г.): количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямопропорционально давлению газа.

с(x) = Kr(x) × P(x)

c(x)– концентрация газа в насыщенном растворе, моль/л;

P(x) – давление газа x над раствором, Па;

Kr(x) – постоянная Генри для газа x, моль×л-1×Па-1 .

Константа Генри зависит от природы газа, растворителя и температуры.

Закон Генри справедлив для сравнительно разбавленных растворов, при невысоких давлениях и отсутствии химического взаимодействия между молекулами растворяемого газа и растворителем.

Закон Генри является частным случаем общего закона Дальтона.

Если речь идет о растворении не одного газообразного вещества, а смеси газов, то растворимость каждого компонента подчиняется закону Дальтона: растворимость каждого из компонентов газовой смеси при постоянной температуре пропорциональна парциальному давлению компонента над жидкостью и не зависит от общего давления смеси и индивидуальности других компонентов.

Под парциальным давлением компонента понимают долю давления компонента от общего давления газовой смеси:

Рi / Робщ

Изучая растворимость газов в жидкостях в присутствии электролитов, русский врач-физиолог И. М. Сеченов (1829—1905) установил закономерность (закон Сеченова): растворимость газов в жидкостях в присутствии электролитов понижается; происходит высаливание газов.

Рi = Робщ ×(xi)

Pi – парциальное давление компонента xi;

Робщ – общее давление газовой смеси;

Хi – молярная доля i-ого компонента.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.