Сделай Сам Свою Работу на 5

Выпрямительный диод. Схемы выпрямителей





Выпрями́тельные дио́ды — диоды, предназначенные для преобразования переменного тока в постоянный. На смену электровакуумным диодам и игнитронам пришли диоды из полупроводниковых материалов и диодные мосты (четыре диода в одном корпусе). Обычно к быстродействию, ёмкости p-n перехода и стабильности параметров выпрямительных диодов не предъявляют специальных требований[1].

Основные параметры выпрямительных диодов:

· среднее прямое напряжение Uпр.ср. при указанном токе Iпр.ср.;

· средний обратный ток Iобр.ср. при заданных значениях обратного напряжения Uобр и температуры;

· допустимое амплитудное значение обратного напряжения Uобр.макс.;

· средний прямой ток Iпр.ср.;

· частота без снижения режимов.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:



Uср = Umax / π = 0,318 Umax

·

· Двухполупериодный выпрямитель с сглаживающим ёмкостным фильтром

·

Тиристоры. Вольт-амперная характеристика

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или болееp-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

· Между точками 0 и (Vвo,IL) находится участок, соответствующий высокомусопротивлению прибора — прямое запирание (нижняя ветвь).

· В точке Vво происходит включение тиристора (точка переключения динистора во включённое состояние).

· Между точками (Vво, IL) и (Vн,Iн) находится участок с отрицательным дифференциальным сопротивлением-неустойчивая область переключения во включённое состояние. При подаче разности потенциалов между анодом и катодом тиристора прямой полярности больше Vно происходит отпирание тиристора (динисторный эффект).



· Участок от точки с координатами (Vн,Iн) и выше соответствует открытому состоянию (прямой проводимости)

· На графике показаны ВАХ с разными токами управления (токами на управляющем электроде тиристора) IG (IG=0; IG>0; IG>>0), причём чем больше ток IG, тем при меньшем напряжении Vbo происходит переключение тиристора в проводящее состояние

· Пунктиром обозначен т. н. «ток включения спрямления» (IG>>0), при котором тиристор переходит в проводящее состояние при минимальном напряжении анод-катод. Для того, чтобы перевести тиристор обратно в непроводящее состояние необходимо снизить ток в цепи анод-катод ниже тока включения спрямления.

· Участок между 0 и Vbr описывает режим обратного запирания прибора.

· Участок далее Vbr — режим обратного пробоя.

Схемы включения тиристоров

В данной схеме включения тиристора, тиристор переходит в открытое состояние когда напряжение на входе 1 оптопары достигает 1,8-2,5В силой тока 5-7мА. Небольшой недостаток включения тиристора через диодный мост - это потери напряжения на нем, порядка 20В. Свечение лампы по данной схеме будет чуть тускнее нежели при прямом включении.

На рисунке 2 показана схема включения тиристора через транзистор. Управляющий ток проходящий через резистор R2 невелик и составляет не более 30мА. Условие выбора транзистора должно быть следующим, что бы максимальное напряжение коллектор эмитер было не менее 300В.



Тиристоры

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (напримертринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).

Схемы вкл. тиристоров

3 с помощью оптопары 4 по аноду

Свето фотодиоды

Фотодио́д — приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.

 

Светодио́д — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Биполярный транзистор

Биполярный транзистор представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода. Поэтому транзистор можно представить в виде двух встречно включенных диода. В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.

База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером - слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором - слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

При включении транзистора в режиме усиления, эмиттерный переход получается открытым, а переход коллектора закрыт. Это получается путем подключения источников питания.

Поскольку эмиттерный переход открыт, то через него будет проходить эмиттерный ток, возникающий из-за перехода дырок из базы в эмиттер, а так же электронов из эмиттера в базу. Таки образом, ток эмиттера содержит две составляющие – дырочную и электронную. Коэффициент инжекции определяет эффективность эмиттера. Инжекцией зарядов именуют перенос носителей зарядов из зоны, где они были основными в зону, где они делаются неосновными.

В базе электроны рекомбинируют, а их концентрация в базе восполняется от плюса источника ЕЭ. В результате этого в электрической цепи базы будет течь довольно слабый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под разгоняющим воздействием поля запертого коллекторного перехода, как неосновные носители, будут перемещаться в коллектор, создавая коллекторный ток. Перенос носителей зарядов из зоны, где они были неосновными, в зону, где они становятся основными, именуется экстракцией электрических зарядов.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.