Сделай Сам Свою Работу на 5

Конъюгирование жёлчных кислот





Конъюгирование - присоединение ионизированных молекул глицина или таурина к карбоксильной группе жёлчных кислот; усиливает их детергентные свойства, так как увеличивает амфифильность молекул.

Конъюгация происходит в клетках печени и начинается с образования активной формы жёлчных кислот - производных КоА. Затем присоединяется таурин или глицин, и в результате образуется 4 варианта конъюгатов: таурохолевая и таурохенодезоксихолевая, гликохолевая или гликохенодезоксихолевая кислоты (они значительно более сильные эмульгаторы, чем исходные жёлчные кислоты). Конъюгатов с глицином образуется в 3 раза больше, чем с таурином, так как количество таурина ограничено.

 

Продукты гидролиза жиров всасываются в основном в верхнем отделе тонкого кишечника, а соли жёлчных кислот - в подвздошной кишке. Около 95% жёлчных кислот, попавших в кишечник, возвращается в печень через воротную вену, затем опять секретируются в жёлчь и повторно используются в эмульгировании жиров. Этот путь жёлчных кислот называют энтерогепатической циркуляцией. В сутки всего реабсорбируется 12-32 г солей жёлчных кислот, так как в организме имеется 2-4 г жёлчных кислот, и каждая молекула жёлчной кислоты проходит этот крут 6-8 раз.



Часть жёлчных кислот в кишечнике подвергается действию ферментов бактерий, которые отщепляют глицин и таурин, а также гидроксильную группу в положении 7 жёлчных кислот. Жёлчные кислоты, лишённые этой гидроксильной группы, называют вторичными. Вторичные жёлчные кислоты: дезоксихолевая, образующаяся из холевой, и литохолевая, образующаяся из дезоксихолевой, хуже растворимы, медленнее всасываются в кишечнике, чем первичные жёлчные кислоты. Поэтому с фекалиями в основном удаляются вторичные жёлчные кислоты. Однако реабсорбированные вторичные жёлчные кислоты в печени опять превращаются в первичные и участвуют в эмульгировании жиров. За сутки из организма выводится 500-600 мг жёлчных кислот. Путь выведения жёлчных кислот одновременно служит и основным путём выведения холестерола из организма. Для восполнения потери жёлчных кислот с фекалиями в печени постоянно происходит синтез жёлчных кислот из холестерола в количестве, эквивалентном выведенным жёлчным кислотам. В результате пул жёлчных кислот (2-4 г) остаётся постоянным.



Нарушения переваривания и всасывания жиров. Стеаторея.

Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них - нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.

Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях - возникает стеа-торея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5%. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.

Билет №9

1(1)Эндергонические и экзергонические реакции в живой клетке. Макроэргические соединения: определение, примеры.



Анаболические превращения направлены на образование и обновление структурно-функциональных компонентов клетки, т.е. на синтез сложных биомолекул из более простых. Это восстановительные, эндергонические процессы, протекающие с увеличением свободной энергии.

Катаболические превращения направлены на расщепление сложных молекул (как поступивших с пищей, так и уже входящих в состав клеток) до простых компонентов (на конечных стадиях – преимущественно до CO2 и воды). Это окислительные, экзергонические процессы, сопровождающиеся понижением свободной энергии.

 

Анаболические процессы протекают благодаря энергии, заключенной в химических связях

молекул специфической группы «высокоэнергетических» соединений (АТФ и др.), в которых аккумулируется энергия, выделяемая в катаболических процессах.

В биохимии под "высокоэнергетическими" соединениями понимаются лабильные вещества, гидролиз которых в физиологических условиях сопровождается значительным понижением ∆G. Выигрыш в свободной

энергии используется для смещения равновесия в сопряженных термодинамически невыгодных

биохимических процессах, например синтеза биополимеров. Так, АТФ является сопрягающим энергетическим звеном обеих сторон метаболизма – анаболизма и катаболизма. Такое энергетическое

сопряжение представляет собой основной способ использования энергии в живых организмах.

Но не только АТФ, а и другие соединения, образующиеся в результате катаболизма и используемые в анаболических процессах для синтеза специфических биомолекул, выполняют роль

субстратов, сопрягающих отдельные метаболические процессы. Такие пути (или циклы) катаболических и анаболических процессов – называют амфиболические.

Амфиболические пути придают обмену веществ

значительную гибкость и экономичность с точки зрения использования энергии и материальных ресурсов.

 

 

2(28) Регуляция углеводного обмена в организме. Уровень «сахара» в крови как гомео-статический параметр внутренней среды. Глюкозоксидазный метод определения содержания глюкозы крови.

Результат регуляции метаболических путей превращения глюкозы - постоянство концентрации глюкозы в крови. Концентрация глюкозы в артериальной крови в течение суток поддерживается на постоянном уровне 60-100 мг/дл (3,3-5,5 ммоль/л). После приёма углеводной пищи уровень глюкозы возрастает в течение примерно 1 ч до 150 мг/дл (∼8 ммоль/л, алиментарная гипергликемия), а затем возвращается к нормальному уровню (примерно через 2 ч).

 

Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах Для предотвращения чрезмерного повышения концентрации глюкозы в крови при пищеварении основное значение имеет потребление глюкозы печенью и мышцами, в меньшей мере - жировой тканью.В печени глюкоза откладывается в печени в форме гликогена, остальная часть превращается в жиры и окисляется, обеспечивая синтез АТФ. Ускорение этих процессов инициируется повышением инсулинглюкагонового индекса. Другая часть глюкозы, поступающей из кишечника, попадает в общий кровоток. Примерно 2/3 этого количества поглощается мышцами и жировой тканью. Это обусловлено увеличением проницаемости мембран мышечных и жировых клеток для глюкозы под влиянием высокой концентрации инсулина. Остальная часть глюкозы общего кровотока поглощается другими клетками (инсулинонезависимыми).При нормальном ритме питания и сбалансированном рационе концентрация глюкозы в крови и снабжение глюкозой всех органов поддерживается главным образом за счёт синтеза и распада гликогена. Лишь к концу ночного сна, может несколько увеличиться роль глюконеогенеза, значение которого будет возрастать, если завтрак не состоится и голодание продолжится

Глюкозооксидазный метод Фермент глюкозооксидаза катализирует окисление глюкозы до глюконовой кислоты и образование перекиси водорода H2O2:

Фермент пероксидаза в присутствии перекиси водорода окисляет хромогенный краситель типа о-дианизидина, что приводит к образованию окрашенного продукта, интенсивность окраски которого пропорциональна содержанию глюкозы в среде инкубации:

Фотометрию проводят при длине волны 400 нм. Реакция протекает в два этапа. На 1 этапе происходит окисление глюкозы до глюконовой кислоты при участии фермента глюкозооксидазы. Глюкозооксидаза высокоспецифична по отношению к β-D-глюкозе. В водных растворах глюкоза находится в λ-форме (36%)и β-форме (64%). Окисление глюкозы при участии глюкозооксидазы требует превращения λ- в β-форму, которое ускоряется под влиянием фермента мутаротазы. Некоторые образцы глюкозооксидазы содержат фермент мутаротазу, обеспечивающий превращение этих форм. В противном случае требуется увеличение времени инкубации, что способствует самопроизвольному переходу λ-формы в β-форму.

2 этап, включающий пероксидазную реакцию, является менее специфичным. Многие вещества: мочевая кислота, аскорбиновая кислота, билирубин, гемоглобин, тетрациклины, глутатион — приводят к занижению результатов, вероятно, конкурируя с хромогеном за H2O2. Большая часть мешающих определению веществ может быть удалена из раствора их осаждением.

Глюкозооксидазный метод пригоден для определения глюкозы в спинномозговой жидкости. В моче содержатся высокие концентрации веществ, способных вмешиваться в пероксидазную реакцию, в частности, мочевая кислота, что способствует получению ложноотрицательных результатов. В связи с этим глюкозооксидазный метод следует с осторожностью использовать для определения глюкозы в моче.

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.