Сделай Сам Свою Работу на 5

Энзимодиагностика при инфаркте миокарда





При инфаркте миокарда наблюдают достоверные изменения в крови активности ферментов КК, ЛДГ и аспартатаминотрансферазы - ACT, которые зависят от времени, прошедшего от начала развития инфаркта и от зоны тканевого повреждения.

 

45. Принципы обнаружения и количественной оценки ферментов. Единицы измерения активности и количества ферментов

Ферменты обнаруживают и оценивают по двум критериям: по появлению продуктов реакции или по исчезновению субстратов. Ферменты проявляют специфичность в отношении субстратов и типа реакции. Активность ферментов зависит от температуры, рН среды, концентрации субстрата [S] и концентрации фермента [Е].

Количественная оценка активности ферментов в биологических жидкостях (кровь, моча, слюна) широко используются в клинической практике для диагностики и дифференциальной диагностики заболеваний. Как правило, активность ферментов увеличивается при заболеваниях печени, инфаркте миокарда и других видах патологии. При диагностике болезней, связанных с врожденной недостаточностью метаболизма, определение активности ферментов становится единственным критерием болезни.



Количественная оценка активности ферментов основывается на измерении количества образовавшегося продукта реакции или убыли субстрата в единицу времени, отнесенного к 1 мг белка или 1 мл биологической жидкости.

 

Скорость ферментативной реакции определяется изменением концентрации продукта или субстрата за единицу времени

Для выражения концентрации фермента и количественной оценки его активности в условных единицах Комиссией по ферментам Международного биохимического союза была рекомендована стандартная международная единица (МЕ)

 

Количество единиц активности nME определяют по формуле:

 

nME=

 

В 1973 г. была принята новая единица активности ферментов: 1 катал (кат), соответствующий такому количеству катализатора, которое превращает 1 моль субстрата за 1 с. Количество каталов определяют по формуле:

 

n катал =

 

Международная единица ферментативной активности ME связана с каталом следующими равенствами:

 

1 кат = 1 моль S/c = 60 моль S/мин = 60х106 мкмоль/мин = 6х107 ME,



 

1 ME = 1 мкмоль/мин = 1/60 мкмоль/с = 1/60 мккат = 16,67 нкат.

 

В медицинской и фармацевтической практике для оценки активности ферментов часто используют международные единицы активности - ME. Для оценки количества молекул фермента среди других белков данной ткани определяют удельную активность (уд. ак.) фермента, численно равную количеству единиц активности фермента (пМЕ) в образце ткани, делённому на массу (мг) белка в этой ткани:

 

Уд. ак. =

 

 

По удельной активности судят об очистке фермента: чем меньше посторонних белков, тем выше удельная активность.

Рекомендовано, кроме того, измерять активность фермента при температуре 25°С, оптимуме рН и концентрации субстрата, превышающей концентрацию насыщения. В этих случаях скорость соответствует нулевому порядку реакции в отношении субстрата и будет зависеть только от концентрации фермента.

 

 

46 Опыты по изучению pH среды, термолабильности и специфичности ферментов техника выполнения

Белковая природа обеспечивает ферментам характерные для белков строение и свойства и, прежде всего, лабильность, т.е. способность изменять активность в зависимости от различных факторов (температуры, рН, концентрации фермента и концентрации субстрата, активаторов и ингибиторов и т.п.). Степень изменения активности от различных факторов можно определить по скорости ферментативной реакции. Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. При изучении влияния какого-либо фактора на скорость ферментативной реакции все прочие факторы должны оставаться неизменными и по возможности иметь оптимальные значения.



Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоком значении к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрат. Кроме того, для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. Специфичность – одно из наиболее выдающихся свойств ферментов. Данное свойство ферментов объясняется в первую очередь совпадением пространственных конфигураций субстрата и субстратного центра фермента. Ферменты могут обладать абсолютной, относительной, стереохимической специфичностью. Влияние на ферменты активаторов и ингибиторов впервые было изучено А.Я.Данилевским. Ингибиторы тормозят действие ферментов. Механизм ингибирующего действия сводится к двум типам торможения (необратимое и обратимое). Обратимое ингибирование действия ферментов может быть конкурентным и неконкурентным.

Специфичность действия ферментов – это способность катализировать одну или несколько близких реакций, преобразовывать одно вещество или один вид связей. Специфичность ферментов бывает нескольких видов: абсолютная, относительная (групповая), стереохимическая.

Ферменты отличаются от катализаторов небиологической природы высокой специфичностью, что обусловлено индивидуальными особенностями строения активных центров различных ферментов. Пространственная структура активного центра предопределяет не только комплементарность субстрату, но и природу последующих превращений субстрата в фермент- субстратном комплексе, приводящих к образованию соответствующего продукта. Будучи высокоспецифичной, ферментативная реакция протекает в 105-1012 раз быстрее, чем самопроизвольная (спонтанная) реакция.

 

СПЕЦИФИЧНОСТЬ ДЕЙСТВИЯ АМИЛАЗЫ И САХАРАЗЫ

Для изучения специфичности этих ферментов используем амилазу слюны и сахаразу хлебопекарных дрожжей. Амилаза слюны (3.2.1.1) по механизму действия является a-амилазой. Катализирует гидролиз a-1,4-гликозидных связей в молекуле крахмала (и гликогена)

без определенного порядка. Процесс гидролиза происходит как бы ступенчато и может быть выражен в виде схемы:

Крахмал ® Амилодекстрины ® Эритродекстрины ® Ахродекстрины ® Мальтодекстрины ® Мальтоза. Глубину гидролиза крахмала можно контролировать по цветной реакции с раствором йода (см. табл. 8).

Сахараза из дрожжей имеет более правильное рабочее название b-фруктофуранозидаза (3.2.1.26). Катализирует гидролиз

b-гликозидных связей в молекулах как сахарозы, так и раффинозы, при этом сахароза расщепляется на глюкозу и фруктозу, которые обнаруживаются реакцией Троммера.

 

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СКОРОСТЬ ФЕРМЕНТАТИВНОЙ РЕАКЦИИ (на акт ферментов)

Скорость ферментативной реакции зависит от температуры. Оптимальным считается то значение ее, при котором реакция протекает с максимальной скоростью. Для большинства ферментов, выделенных из организма теплокровных и многих микроорганизмов оптимальная температура составляет 37-40 °С, для ферментов растительного происхождения – 40-50 ˚С. Повышение температуры сверх оптимальной приводит к уменьшению, а затем прекращению действия фермента, что связанно с денатурацией. При переходе от оптимальной к низким температурам скорость ферментативной реакции падает в 2-2,5 раза на каждые 10 ˚С, достигая минимальной величины при 0 °С и приостанавливается при отрицательных её значениях (минус 18 ˚С). Причиной является снижение скорости движения молекул субстратов и ферментов, что замедляет образование фермент-субстратного комплекса и проведения реакции. При повышении температуры от отрицательных значений действие ферментов восстанавливается, скорость катализируемых реакций возрастает в 2-2,5 раза на каждые 10 ˚С, до оптимальной температуры. Принцип снижения активности ферментов при понижении температуры используется при консервировании сырья и готовой продукции низкими температурами. Инактивация ферментов высокой температурой необратима, используется в пищевой промышленности для консервирования многих продуктов растительного и животного происхождения.

ВЛИЯНИЕ рН НА СКОРОСТЬ ФЕРМЕНТАТИВНОЙ РЕАКЦИИ

Ферменты при постоянной температуре работают наиболее эффективно в пределах рН (от 2 до 10) . Оптимальным считается то значение рН, при котором реакция протекает с максимальной скоростью. Отклонение в любую сторону от этого значения сопровождается снижением скорости ферментативной реакции. Это объясняется тем, что ферменты имеют большое число полярных, положительно и отрицательно заряженных групп, участвующих в поддержании нативной конформации, образовании фермент-субстратного комплекса и проведении реакции.

Во многих случаях субстраты являются электролитами, и реакция осуществляется лишь с определенными (ионизированными или неионизированными) их формами, возникающими при оптимуме рН.

Многие ферменты являются двухкомпонентными (сложными белками), небелковый компонент которых слабо связан с белком ионными, водородными связями в условиях оптимума рН. Сдвиги рН за пределы оптимума вызывают диссоциацию кофактора и разрушение структуры активного центра. Например, пероксидаза диссоциирует в кислой среде на два компонента, однако при рН 7,0 её структура и активность восстанавливаются.

При очень низких и очень высоких значениях рН ферменты денатурируют.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.