Сделай Сам Свою Работу на 5

Длина свободного пробега электрона и вероятность ионизации.





Раздел Внешняя изоляция.

Общая характеристика Внешней Изоляции.

К внешней изоляции относятся воздушные промежутки (например, между проводами разных фаз линии электропередачи), внешние поверхности твердой изоляции (изоляторов), промежутки между контактами разъединителя и т.п. Неизменность свойств с течением времени (не стареет). Важной особенностью внешней изоляции является ее способность восстанавливать свою электрическую прочность после устранения причины пробоя. Однако электрическая прочность внешней изоляции зависит от атмосферных условий: давления, температуры и влажности воздуха. На электрическую прочность изоляторов наружной установки влияют также загрязнения их поверхности и атмосферные осадки (температура, давление, влажность, загрязнение атмосферы, радиактивный фон.)

______________________________________________________________

 

Электрическая прочность воздушных промежутков.

Eo=30кв/см пробивная напряженность коротких воздушных промежутков в однородном электрическом поле. Однородное электрическое поле в каждой точке которой напряженность одинакова. При н.у. и выполнения пред. Условий (t=20C P=760мм) вводят понятие коэффициент неоднородности k=Eo/Eср если поле неоднородно и это отношение всегда >1.



Электрическим пробоем диэлектрика называется явление потери

диэлектриком изоляционных свойств при превышении напряженностью

электрического поля критического значения. Электрической прочностью

диэлектрика Eпр называют среднее значение напряженности электрического поля

в межэлектродном промежутке непосредственно перед пробоем, поскольку проще

всего измерять и оценивать именно эту величину:

Епр=Uпр/S ,S – расстояние между электродами.

Электрическая прочность газового промежутка зависит как от расстояния

между электродами, так и – в равной степени – от давления и температуры газа.

Очень сильно на электрическую прочность изоляционного промежутка – и не

только газового промежутка – влияет форма электродов. Кроме того,

электрическая прочность сложным образом зависит от скорости нарастания

напряжения, определяя возможности пробоя изоляционного промежутка от



длительности приложенного напряжения.Частичный пробой воздушных промежутков вблизи электродов с резким неоднородным полем. Eср=Ео*(То/Т)*(Р/Ро) То=273+20=293К Т=t+273

1-2м 10кв/см ; 2-5 ; 2-5м-5кв/см ; 10-20м 1-2кв/см ; 1км ≈0.02кв/см

______________________________________________________________

Зависимость внешней изоляции от природных условий

На электрическую прочность изоляторов наружной установки влияют также загрязнения их поверхности и атмосферные осадки (температура, давление, влажность, загрязнение атмосферы, радиактивный фон.)

______________________________________________________________

Регулирование электрическим полем во внешне изоляции

При резконеоднородных полях во внешней изоляции возможен

коронный разряд у электродов с малым радиусом кривизны. Появление короны вызывает дополнительные потери энергии и интенсивные радиопомехи. В связи с этим большое значение имеют меры по уменьшению степени неоднородности электрических полей, которые позволяют ограничить возможность возникновения короны, а также несколько увеличить разрядные напряжения внешней изоляции.

Регулирование электрических полей во внешней изоляции осуществляется с помощью экранов на арматуре изоляторов, которые увеличивают радиус кривизны электродов, что и повышает разрядные напряжения воздушных промежутков. На воздушных ЛЭП высоких классов напряжений используются расщепленные провода.

______________________________________________________________

5 Общие требования, предъявляемые к диэлектрикам внешней изоляции

Требования, предъявляемые к изоляции в электрооборудовании (ЭО):

1) требуемый ресурс (срок службы) при рабочем напряжении;



2) достаточная электрическая прочность при воздействии внутренних и

грозовых (если это требуется) перенапряжений;

3) достаточная механическая прочность при всех возможных рабочих и

аварийных нагрузках;

На сжатие 450МПА, изгиб 70-80МПА, Растяжение 30МПА

4) требуемая надежность;

5) минимальная стоимость;

6) в ряде случаев — минимальные размеры и масса;

7) технологичность изготовления изоляции и всего оборудования в це-

лом;

8) простота ремонта;

10) безопасность обслуживания;

11) экологическая безопасность. 12) Трекингостойкость. 13) Легкость утилизации. 14) Негидроскопичность.

______________________________________________________________

Типы диэлектриков внешней изоляции.

Всем указанным требованиям в наибольшей степени удовлетворяют глазурированный электротехнический фарфор и электротехническое стекло, получившие широкое распространение, а также некоторые пластмассы.

Сравнительные характеристики стекла и фарфора можно представить следующим образом.

ФАРФОР СТЕКЛО

Электрическая прочность 30-40 кВ/мм 45 кВ/мм

в однородном поле при

толщине образца 1,5 мм

Механическая прочность

при сжатии 450 Мпа 400-450 Мпа

при изгибе 70 Мпа 80 Мпа

при растяжении 30 Мпа 25-30 Мпа

Изоляторы из закаленного стекла имеют ряд преимуществ перед фарфоровыми: технологический процесс их изготовления полностью автоматизирован; прозрачность стекла позволяет легко обнаружить при внешнем осмотре мелкие трещины и другие внутренние дефекты; повреждение стекла приводит к разрушению диэлектрической части подвесного изолятора, которое легко обнаружить при осмотре ЛЭП эксплуатационным персоналом. Полимерные изоляторы наружной установки изготовляются из эпоксидных компаундов на основе циклоолифатических смол, из кремнийорганической резины, из полиэфирных смол с минеральным наполнителем и добавкой фторопласта. Такие изоляторы имеют высокую электрическую прочность и достаточную трекингостойкость. Высокая механическая прочность полимерных изоляторов достигается посредством армирования их стеклопластиком. Применение полимерных изоляторов на ЛЭП позволяет существенно уменьшить массу подвесных изоляторов.

______________________________________________________________

7 Типы изоляторов и их назначение. По своему назначению изоляторы делятся на опорные, подвесные и проходные. Опорные изоляторы в свою очередь подразделяются на стержневые и штыревые, а подвесные - на тарельчатые и стержневые. Опорно-стержневые изоляторы применяют в ЗРУ и ОРУ для крепления на них токоведущих шин или контактных деталей. Опорно-стержневые изоляторы наружной установки отличаются большим количеством ребер, чем изоляторы внутренней установки. Ребра служат для увеличения длины пути тока утечки с целью повышения разрядных напряжений изоляторов под дождем и в условиях увлажненных загрязнений. Обозначение, например, ОСН-35-2000 расшифровывается следующим образом: опорный, наружной установки, стержневой на 35 кВ, с минимальной разрушающей силой 2000 даН. Опорно-штыревые изоляторы применяют для наружных установок в тех случаях, когда требуется высокая механическая прочность. В установках напряжением 110 кВ и выше используются колонки, состоящие из нескольких, установленных друг на друга опорно-штыревых изоляторов на напряжение 35 кВ. В обозначение изоляторов введена буква Ш (штыревой). Штыревые линейные изоляторы применяются на напряжения 6-10 кВ. Обозначение ШФ6 означает: штыревой фарфоровый на 6 кВ. Буква С в обозначении (ШС) указывает на то, что изолятор стеклянный. Подвесные изоляторы тарельчатого типа используются на воздушных ЛЭП 35 кВ и выше. Требуемый уровень выдерживаемых напряжений достигается соединением необходимого числа изоляторов в гирлянду. Гирляны благодаря шарнирному соединению изоляторов работают только на растяжение. Однако изоляторы сконструированы так, что внешнее растягивающее усилие создает в изоляционном теле в основном напряжения сжатия. Так используется высокая прочность фарфора и стекла на сжатие. Подвесные стержневые изоляторы, как правило, выполняются из электротехнического фарфора. Однако в настоящее время выпускаются и стержневые полимерные изоляторы. Проходные изоляторы применяются для изоляции токоведущих частей при прохождении их через стены, потолки и другие элементы конструкций РУ и аппаратов. Проходные изоляторы, предназначенные для наружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения. Обозначение проходного изолятора содержит значение номинального тока, например ПНШ-35/3000-2000 означает: проходной, наружной установки, шинный на напряжение 35 кВ и номинальный ток 3 кА с механической прочностью 20 кН.

______________________________________________________________

8 Энергия электрона в электрическом поле и энергетические характеристики газа. Частицы газа находятся в состоянии теплового движения, постоянно взаимодействуя (сталкиваясь) друг с другом.В электрическом поле на заряженные частицы (ионы и электроны) действует сила

F=eE, (2)

где е - заряд частицы; Е - напряженность электрического поля. Энергия, накапливаемая электроном в электрическом поле, равна

(3)

где х - расстояние, пролетаемое электроном в направлении поля. При значительном повышении температуры газа кинетическая энергия нейтральных частиц возрастает настолько, что становится возможной ионизация при их столкновении термоионизация. Газ, в котором значительная часть частиц ионизирована, называется плазмой. Концентрации положительно и отрицательно заряженных частиц в плазме примерно одинаковы. Плазма представляет собой форму существования вещества при высоких температурах.

Длина свободного пробега электрона и вероятность ионизации.

Частицы газа находятся в состоянии теплового движения, постоянно взаимодействуя (сталкиваясь) друг с другом. Число столкновений z, испытываемых какой либо частицей на пути в 1 см, пропорционально концентрации N. Величина, обратная числу столкновений, l=1/z представляет собой среднюю длину свободного пробега частицы. Действительные длины свободных пробегов подвержены значительному разбросу. Вероятность того, что длина свободного пробега частицы равна или больше x, cоставляет

(1)

Если больше энергии ионизации , то при столкновении электрона с нейтральной частицей может произойти ионизация. Если энергии электрона недостаточно для этого, то возможно возбуждение частицы, а при столкновении с возбужденной частицей, находящейся в метастабильном состоянии, такой электрон может участвовать в процессе ступенчатой ионизации.Расстояние, который должен пролететь электрон, чтобы накопить достаточную для ионизации энергию, определяется как

(4)

и зависит от напряженности электрического поля.Вероятность того, что электрон пролетит путь без столкновений, составляет

, (5)

но это и есть вероятность приобретения электроном энергии , при которой возможна ионизация, т.е. можно считать вероятностью ионизации.

______________________________________________________________

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.