Сделай Сам Свою Работу на 5

Регуляция белкового обмена





Тканевый обмен веществ

Тканевый обмен

Основой жизнедеятельности живого организма служит обмен веществ (метаболизм).

Жизнь и белок — понятия неразрывные. Это объясняется тем, что белок является материальной основой жизни, то есть основу всего живого составляют белки. Следовательно, без белков жизнь на Земле невозможна.

В организме происходят непрерывно и автоматически протекающие превращения химических веществ, и взаиморегуляции этих процессов. И. П. Павлов рассматривал обмен веществ как основу физиологических функций организма.

Обмен веществ животных складывается из двух тесно связанных друг с другом процессов— ассимиляции и диссимиляции.

Ассимиляция, или анаболизм — процесс усвоения организмом питательных веществ, поступающих из внешней среды. Питательные вещества ассимилируются и становятся белками, жирами и углеводами, присущими данному организму, его строительными материалами и энергетическими ресурсами. Эти сложные биохимические преобразования и превращения совершаются при участии многочисленных ферментов.

Диссимиляция, или катаболизм - процесс распада сложных органических веществ, сопровождающийся освобождением большого количества энергии. Процессы ассимиляции и диссимиляции, тесно переплетаясь друг с другом, способствуют постоянному обновлению состава организма, что, конечно, требует и энергетического обеспечения.



Основное свойство живой материи — обмен веществ, представляющий достаточно подвижную и гибкую, но строго упорядоченную систему биохимических реакций

Регуляцию обмена веществ и энергии осуществляет центральная нервная система, в первую очередь кора головного мозга и некоторые его подкорковые образования. Особое значение имеет гипоталамус. В нервных клетках этого отдела мозга сосредоточены центры управления тончайшими процессами обмена веществ и энергии. Через вегетативную нервную систему и железы внутренней секреции гипоталамус регулирует и координирует многообразные проявления жизнедеятельности клеток, органов и тканей.

ОБМЕН БЕЛКОВ

Организм животного — чрезвычайно сложная биохимическая лаборатория. Здесь постоянно с огромной скоростью происходят многочисленные химические реакции, разрушается и вновь создается множество простых и сложных химических соединений.



Белки играют исключительную роль в жизнедеятельности организма, служат главными носителями жизни. Белки специфичны; это зависит от различий в форме молекул — конформации, которая обусловлена определенным порядком чередования аминокислот в полипептидной цепи молекулы белка.

Все аминокислоты, встречающиеся в белках, содержат аминогруппу и карбоксильную группу: различаются они по радикалам. Благодаря наличию аминогруппы аминокислота может выступать в роли основания и реагировать с кислотами, а кислотная группа позволяет ей реагировать с основаниями. Поэтому белки способны выполнять роль буферов.

Биологическая ценность различных белков неодинакова. Она зависит от аминокислотного состава, наличия заменимых и незаменимых аминокислот.

Значение незаменимых аминокислот состоит в том, что, кроме участия в образовании белка, они играют важную роль в обмене веществ, а также выполняют специальные функции в организме. Например, метионин принимает участие в процессе метилирования при образовании холина и креатина и вместе с тирозином участвует в синтезе адреналина и норадреналина. Фенилаланин и тирозин необходимы для образования адреналина, норадреналина и тироксина. При отсутствии валина возникает перерождение тканей головного мозга и наступает мышечная слабость. Триптофан служит источником синтеза антипеллагрического витамина (никотинамида). Аргинин принимает участие в образовании мочевины и является источником гуанидиновой группы при синтезе креатина. Гистидин имеет имидазольное кольцо ( это углеродные циклические соединения, в которых один или несколько атомов кольцевой системы являются отличными от углерода неметаллами (кислородом, азотом или серой)), которое не может быть синтезировано организмом.



Биологическая ценность белка определяется также степенью усвоения (ассимиляции) его организмом. Чем больше ассимилируется данного белка, тем меньше его нужно для покрытия потребностей организма в белках и тем, следовательно, больше его биологическая ценность. Биологическая ценность белка тем выше, чем ближе его аминокислотный состав к составу белков данного организма.

Азотистый баланс. Использование белка тканями происходит беспрерывно. Для выяснения количественной стороны белкового обмена необходимо знать количество принятого с кормом белка и уровень его усвоения организмом. Ввиду того что белок в отличие от углеводов и жиров содержит в своей молекуле азот (14—19 %), о количестве поступивших в организм и использованных белков можно судить по величине азотистого баланса.

Для расчета принимается, что 100 г белка в среднем содержат 16 % азота. Определяя содержание азота в кормах и выделенное его количество вместе с калом, мочой и потом, можно установить азотистый баланс. По его величине устанавливают приход и расход белка, для чего найденную величину азота умножают на 6,25 (100:16 = 6,25).

У взрослого здорового животного, находящегося в нормальных условиях кормления и содержания, отмечают азотистое равновесие, то есть количество азота, потребленного с белком, и количество азота, выделенного из организма, равны.

При окислении белков образуется аммиак, который поступает в кровь, печень и почки, где из него синтезируется мочевина. Частично мочевина крови выводится с мочой, у жвачных также экскретируется в преджелудки, выделяется слюнными железами и снова поступает в рубец. Такой кругооборот азота служит важнейшей приспособительной реакцией организма, повышающей азотистый баланс корма.

Положительным азотистым балансом называют состояние, когда часть азота корма задерживается в организме.

Отрицательный азотистый баланс характеризуется тем, что из организма выделяется больше азота, чем его поступает с кормом.

Использование белков тканями организма осуществляется непрерывно, независимо от их поступления с кормом. Животный организм в зависимости от количества белков в кормах может иметь различную высоту уровня азотистого равновесия. Белок в теле взрослого организма в обычных условиях не откладывается про запас, а разрушение его в процессе обмена веществ идет постоянно.

Даже при безбелковом кормлении из организма с мочой выделяются азотистые вещества, то есть идет разрушение белка в процессе метаболизма. Для того чтобы постоянно поддерживать азотистое равновесие в организме, необходимо обязательное поступление определенного количества белка. Это минимальное количество белка, способствующее поддержанию азотистого равновесия в организме, получило название белкового минимума.

Для сельскохозяйственных животных белковый минимум (в граммах на 1 кг живой массы) примерно следующий: для овцы и свиньи — 1; для лошади в покое — 0,7—0,8, в работе— 1,2—1,42; для нелактирующей коровы — 0,6—0,7, для лактирующей— 1.

Эти нормы намного превышают количество белка, выводимого из организма в покое при безбелковом питании, названное коэффициентом белкового изнашивания. Указанный белковый минимум не только удерживает азотистое равновесие, но и полностью покрывает энергетические потребности организма.

Потребность организма в белках корма зависит и от таких питательных веществ, как жиры и углеводы. Эндогенный белковый катаболизм уменьшается, если все энергетические затраты организма восполняются полностью за счет углеводов и жиров. Тем самым они заметно предупреждают распад белков организма.

Обмен аминокислот

После всасывания в кровь и частично в лимфу аминокислоты в организме животного претерпевают ряд превращений.

Во-первых, происходит синтез белков, направленный на восполнение физиологических затрат белка в результате жизнедеятельности организма. Для синтеза различных тканевых белков необходим вполне определенный набор незаменимых аминокислот. При отсутствии хотя бы одной незаменимой аминокислоты биосинтез белка не осуществляется.

Часть свободных аминокислот затрачивается на синтез биологически важных веществ — гормонов, ферментов и других активных соединений.

Другая часть, подвергаясь необратимому окислительному процессу, используется в качестве энергетического материала с образованием конечных продуктов — аммиака, углекислого газа и воды. При этом процесс обновления аминокислот в молекулах тканевых белков происходит с разной скоростью. Так, белки печени обновляются наполовину за 18-12 сут, белки плазмы крови — за 18-45 сут.

В обмене аминокислот наибольшее значение имеют реакции дезаминирования, трансаминирования и декарбоксилирования.

Имеется несколько путей дезаминирования: восстановительный, окислительный и гидролитический. Продуктами дезаминирования аминокислот могут быть различные кетокислоты (пировиноградная, щавелевоуксусная, а-кетоглутаровая), оксикислоты (молочная кислота и др.) с выделением аммиака. У животных окислительный путь является преобладающим типом дезаминирования.

Почти все аминокислоты в процессе обмена веществ подвергаются трансаминированию (переаминированию). В процессе дезаминирования и трансаминирования аминокислот образуются кетокислоты, которые являются звеньями как промежуточного обмена аминокислот, так и обмена углеводов и жиров. Через эти соединения осуществляется связь белкового обмена с жировым и углеводным.

Декарбоксилирование аминокислот состоит в отщеплении карбоксильной группы в виде двуокиси углерода. Декарбоксилированию подвергаются и кетокислоты, появившиеся при дезаминировании.

В результате дезаминирования аминокислот и распада других азотистых соединений в тканях непрерывно образуются аммиак, двуокись углерода и вода. Аммиак токсичен для животных, поэтому его накопление привело бы к неизбежному отравлению организма. Однако у высших животных аммиак в органах и тканях не накапливается, а за счет существующих ферментативных механизмов он связывается (обезвреживается) и переходит в мочевину.

Мочевина – это главный конечный продукт азотистого обмена, выделяющийся с мочой у млекопитающих животных. Возможны и другие пути нейтрализации аммиака в организме. Глутаминовая и аспарагиновая кислоты связывают аммиак, превращаясь в глутамин и аспарагин. У птиц и рептилий основной конечный продукт азотистого обмена представлен мочевой кислотой.

Конечными продуктами азотистого обмена, кроме мочевины и мочевой кислоты, являются креатин и гиппуровая кислота.

Обмен сложных белков

Среди белков этой группы существенное биологическое значение имеют нуклеопротеиды, в качестве простетической группы имеющие нуклеиновые кислоты. Пути обмена сложных белков весьма разнообразны. Расщепление нуклеиновых кислот происходит в кишечнике под влиянием ферментов поджелудочной железы – рибонуклеаз и дезоксирибонуклеаз. Поли-нуклеотиды в кишечнике расщепляются на отдельные мононуклеотиды, а последние при отщеплении фосфорной кислоты превращаются в нуклеозиды, которые всасываются в кровь и поступают в органы и ткани. В тканях нуклеозиды под действием ферментов нуклеозидаз расщепляются на азотистые основания и сахар. При этом образуются пуриновые (аденин, гуанин), пиримидиновые (цитозин, урацил, тимин) основания и пептозы.

Азотистые основания пуринового ряда затем подвергаются гидролитическому дезаминированию и дальнейшему окислению до мочевой кислоты. В свою очередь, мочевая кислота под действием фермента уриказы превращается в аллантоин и выделяется с мочой. Что касается сахаристого компонента нуклеиновых кислот, то он окисляется до СО2 и Н2О.

Пиримидиновые азотистые основания подвергаются тотальному разрушению до СО2, Н2О и NH3.

Регуляция белкового обмена

Белковый обмен находится под регулирующим влиянием центральной нервной системы.

В гипоталамической области промежуточного мозга находятся специальные центры, регулирующие белковый обмен.

На белковый обмен оказывает влияние и кора больших полушарий.

В свою очередь, центральная нервная система регулирующую роль осуществляет через железы внутренней секреции: щитовидные железы, надпочечники и гипофиз.

Щитовидная железа

При гиперфункции щитовидной железы повышается обмен белков, мышцы теряют очень важное для них азотистое вещество — креатин, который переходит в мочу. Может также наступать отрицательный азотистый баланс.

Гипофункция щитовидной железы сопровождается явлениями обратного порядка, то есть замедляется обмен веществ, останавливается рост тела, что вызывает карликовость, кретинизм и микседему.

Надпочечники

Под влиянием гормонов корковой части надпочечников (минералокортикоиды — дезоксикортикостерон, альдостерон) в печени и почках усиливается дезаминирование, в связи с этим больше выделяется азота с мочой. При этом увеличивается и общий обмен белков.

Более активное влияние на обмен белков оказывает другая группа гормонов — глюкокортикоиды (кортизол, кортизон, кортикостерон). Эти гормоны ускоряют распад белков и аминокислот, в результате чего также усиливается выделение азота из организма. Недостаток кортикоидных гормонов вызывает явления обратного порядка.

Гипофиз

Гипофиз посредством своих гормонов регулирует деятельность желез внутренней секреции, а его передняя доля (аденогипофиз) регулирует также обмен белков и рост организма. Механизм влияния гормона роста на обмен белков заключается в том, что он стимулирует их синтез в первую очередь в мышцах, в меньшей степени в печени. Вследствие этого с мочой выделяется меньше азота, снижается и уровень аминокислот в плазме крови. Следовательно, гормон роста как бы способствует экономному расходованию белков за счет повышения распада жиров.

Печень, почки

В печени происходит не только синтез белков, но и их перестройка (трансаминирование, дезаминирование). В ней осуществляются процессы обезвреживания аммиака, он превращается в мочевину или используется на образование амидов кислот. Здесь же происходит реакция обезвреживания продуктов гниения белков (индол, скатол, фенолы).

В почках совершается дезаминирование аминокислот, освобождающийся при этом аммиак связывается кислотами, а соли выводятся с мочой. Через почки выделяются и остальные продукты азотистого обмена: мочевина, креатинин, мочевая кислота, аммиак и гиппуровая кислота. При заболевании почек может происходить задержка конечных продуктов белкового обмена, что вызывает отравление организма (уремию) и может привести к гибели животного.

ОБМЕН УГЛЕВОДОВ

К важнейшим группам органических соединений, синтезируемых и используемых клетками организма, относятся углеводы. Различают простые и сложные углеводы. Сложные углеводы, или полисахариды, состоят из остатков большого количества молекул простых углеводов — моносахаридов.

Углеводы служат основным источником энергии в организме. Основной источник углеводов для сельскохозяйственных животных — это клетчатка (полисахарид). В рубце у жвачных и в толстом кишечнике у животных с однокамерным желудком (лошадь, свинья) при расщеплении клетчатки образуется глюкоза. Одна ее часть всасывается в кровь, другая служит пищей для микробов и подвергается дальнейшему распаду с образованием летучих жирных кислот: уксусной, масляной, пропионовой и др.

Основная часть всосавшихся из пищеварительного тракта углеводов через воротную вену поступает в печень, где из них образуется гликоген; здесь он депонируется и служит основным резервным источником образования глюкозы. Часть глюкозы из печени поступает в большой круг кровообращения и транспортируется кровью в органы и ткани, где окисляется и используется для покрытия энергетических затрат организма. Неиспользованная часть глюкозы превращается в триглицериды в жировых депо.

Печени принадлежит главная роль в регуляции постоянства концентрации сахара в крови. При избыточном поступлении углеводов в организм в печени происходит синтез гликогена, а при недостаточном поступлении, наоборот, гликоген в ней распадается до глюкозы. Таким способом поддерживается нормальное количество сахара в крови.

Гликоген синтезируется из глюкозы не только в печени, но и в других органах и тканях. Значительное количество гликогена содержится в мышцах. Они являются также местом усиленного потребления углеводов, особенно во время работы, а во время отдыха синтезируют гликоген за счет глюкозы крови.

В организме животных использование гликогена и глюкозы клетками и тканями, происходит вплоть до образования конечных продуктов обмена с выделением энергии, происходит двумя путями. Распад углеводов, происходящий без участия кислорода, называется анаэробным, а с участием кислорода — аэробным.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.