Сделай Сам Свою Работу на 5

Громкоговорители. Классификация и основные параметры





Громкоговоритель и телефон - это устройства для преобразования электрических колебаний в звуковые, акустические колебания воздушной среды. Поскольку громкоговорители и телефоны являются последними звеньями любого радиовещательного (звуковоспроизводящего) тракта или линии связи, то их свойства оказывают решающее влияние на качество работы в целом.

Акустическая система - устройство для эффективного излучения звука в окружающее пространство в воздушной среде, содержащее одну или несколько головок громкоговорителей, необходимое акустическое оформление, необходимые электрические устройства (фильтры, трансформаторы, регуляторы и т.п.).

По способу преобразования громкоговорители и телефоны подразделяются на электромагнитные (в основном телефоны), электродинамические катушечные, изодинамические, электростатические, пьезоэлектрические и некоторые другие. По виду излучения звука громкоговорители подразделяют на громкоговорители непосредственного излучения (диффузорные, куполообразные, ленточные) и рупорные. Различают громкоговорители по потребляемой электрической мощности (мощные, маломощные), а также и по чувствительности.



Громкоговорители характеризуются большим числом параметров, основные из которых приведены ниже.

Номинальное электрическое сопротивление - заданное в нормативно-технической документации активное сопротивление громкоговорителя при определении подводимой к нему электрической мощности.

Номинальная мощность - заданная электрическая мощность, при которой нелинейные искажения громкоговорителя не должны превышать требуемые.

Частотная характеристика по звуковому давлению - графическая или численная зависимость от частоты уровня звукового давления, развиваемого громкоговорителем в определенной точке свободного поля, находящейся на определенном расстоянии от рабочего центра, при постоянном значении напряжения на выводах громкоговорителя.

Характеристическая чувствительность - среднее звуковое давление, развиваемое громкоговорителем в заданном диапазоне частот на рабочей оси, приведенное к расстоянию 1м от рабочего центра и проводимой электрической мощности 1 Вт.



Неравномерность частотной характеристики звукового давления - разность максимального и минимального значений уровней звукового давления (отношение максимального звукового давления к минимальному, выраженное в децибелах) в заданном диапазоне частот.

Диаграмма направленности - графическая зависимость в условиях свободного поля уровня звукового давления для данных частоты (полосы частот) и расстояния от рабочего центра громкоговорителя от угла между рабочей осью громкоговорителя и направлением в точку измерения.

Приведенный коэффициент полезного действия - отношение акустической мощности, излучаемой громкоговорителем на данной частоте (полосе частот), к подводимой электрической мощности.

Собственная резонансная частота головки - частота, при которой значение модуля полного электрического сопротивления имеет свой первый максимум.

Системная модель громкоговорителя

Громкоговоритель представляет собой сложный электромеханоакустический преобразователь, в котором происходят линейное и нелинейное преобразование сигнала U(t), подводимого в виде напряжения от усилителя в распределенное в пространстве звуковое давление. Если входной сигнал представляет собой аналог реального музыкального или речевого сигнала, он имеет сложную временную нестационарную структуру (рис. 4.1).

Рис. 4.1. Вид входного сигнала

Основная задача при проектировании акустических устройств, в которые входят громкоговорители, состоит в том, чтобы обеспечить неискаженную передачу временной структуры входного сигнала (технически реализуемой является задача передачи временной структуры сигнала с искажениями ниже порогов слышимости). Именно это условие выдвигает требования к неискаженной передаче частотного и динамического диапазона сигнала, а отсюда к уровню линейных и нелинейных искажений в громкоговорителях.



Рис. 4.2. Системная модель громкоговорителя

Функционально громкоговоритель может быть представлен в виде системной модели (рис. 4.2), состоящей из:

  • электромагнитного преобразователя - «магнитная цепь + звуковая катушка», преобразовывающего подводимое напряжение U(t) в переменный ток I(t) и в электромеханическую силу F(t);
  • механического преобразователя - «подвижная система громкоговорителя», осуществляющего линейное и нелинейное преобразование силы F(t) в распределенное по поверхности механическое смещение u*;
  • акустического преобразователя - «излучающая диафрагма + воздушная среда», преобразовывающего смещения u* в распределенное в пространстве звуковое давление p(R, t).

Все эти подсистемы оказывают как прямое, так и обратное влияние друг на друга.

Рис. 4.3. Амплитудная характеристика громкоговорителя.

Работу громкоговорителя можно проиллюстрировать с помощью графика (рис. 4.3). Он показывает, как диффузор громкоговорителя отклоняется от условной средней линии положения покоя. Из графика видно, что чем больше ток, тем дальше отклоняется диффузор, а токам разного направления соответствует отклонение в разные стороны (вперед-назад). Приведенный график называют амплитудной характеристикой. Появление загибов на графике объясняется достаточно просто - ток не может беспредельно отклонять диффузор. Диффузор закреплен достаточно прочно, и амплитуда его отклонений ограничена. До тех пор пока громкоговоритель работает на линейном участке и отклонение прямо пропорционально току, преобразование "ток - звук" происходит без нелинейных искажений.

Громкоговоритель не может одинаково хорошо преобразовать в звук переменные токи разных частот (рис. 4.4).

Рис. 4.4. Частотная характеристика громкоговорителя.

Электродинамические

Наиболее распространенная конструкция обычной электродинамической головки показана на рис. 4.5.

Рис. 4.5. Внешний вид и устройство головки громкоговорителя.

В кольцевом воздушном зазоре магнитной цепи, состоящей из постоянного магнита 6, верхнего и нижнего фланцев, керна 8, составляющих магнитопровод, в радиальном направлении проходит постоянный магнитный поток. В этом зазоре центрирована так называемая звуковая катушка 9, к которой с помощью особо гибких проводников приложено переменное напряжение звуковой частоты. Звуковая катушка обычно имеет четное число слоев обмотки, чтобы ее начало и конец были с одной стороны. Ток, проходя через катушку, взаимодействует с постоянным магнитным потоком и создает электродинамическую силу, приводящую в колебания катушку и скрепленную с ней диафрагму (диффузор) 2. Диффузор представляет собой конус, имеющий в основании окружность или эллипс и прямую или криволинейную образующую. По верхнему краю диффузор имеет гофрированный верхний подвес 3. Назначение верхнего подвеса - обеспечить диффузору возможность колебаться поршнеобразно в широком диапазоне частот и увеличить диапазон линейной зависимости сигнала - смещение диффузора. У своей вершины диффузор, а вместе с ним и звуковая катушка удерживаются с помощью центрирующей шайбы 4. Эта шайба также гофрированная, охватывает по внутреннему контуру вершину диффузора в месте прикрепления каркаса звуковой катушки, а по внешнему - крепится к специальному кольцу или полке, выполненной на диффузородержателе 5. Последний является основой конструкции громкоговорителя. Диффузородержатель имеет окна, назначение которых - исключить возникновение стоячих волн с тыльной стороны диффузора. Вершина конуса диффузора заклеена противопылевым колпачком 1, который может изготавляться как из акустически прозрачного материала, так и из акустически непрозрачного, жесткого. В последнем случае такой колпачек выполняет также функцию дополнительного излучателя для высоких частот и с целью исключения появления под ним при больших амплитудах колебаний диффузора, в каркасе звуковой катушки делают антикомпрессионные отверстия. Для более эффективного отвода тепла от звуковой катушки мощные головки громкоговорителей снабжаются радиатором 7. такой радиатор выполняет функцию экрана, уменьшающего магнитный поток рассеяния, и защитной крышки, предохраняющей хрупкий постоянный магнит от случайных повреждений.

Электростатичекие

Работа электростатического излучателя основана на взаимодействии электростатических зарядов. Он представляет собой две перфорированные пластины, между которыми натянута мембрана. Мембрана, как правило, выполнена из полимера с нанесенным на него проводящим слоем. Толщина ее - 10-15 микрон, а масса соизмерима с массой колеблющегося воздуха. Таким образом, статик является практически безынерционным излучателем, что позволяет ему работать в широком диапазоне частот с малыми искажениями. На пленку подается напряжение поляризации (несколько кВ), а на пластины от усилителя через трансформатор - звуковой сигнал. В результате взаимодействие заряда на пленке с напряжением на пластинах заставляет пленку двигаться со звуковой частотой. Статик - биполярная система, то есть излучает одинаковую акустическую энергию в обе стороны относительно плоскости излучателя. Поэтому ставить его вплотную к стене нельзя - это помешает нормальной работе, звучание будет тусклое, "сдавленное". Оптимальное расположение от стены 70-100 см.

Рис. 4.6. Примерный вид статического громкоговорителя.

Рупорные

Довольно широкое применение для озвучения имеют рупорные громкоговорители. Устройство электродинамического рупорного громкоговорителя отличается от устройства диффузорного тем, что либо к диффузору примыкает рупор, назначение которого в данном случае - служить концентратором и, следовательно, увеличивать звуковое давление на оси рупора, либо со звуковой катушкой скрепляют диафрагму обычно куполообразной формы, а по переферии - гофрированный подвес. Диафрагма через акустическую камеру, представляющую собой объем воздуха с входным сечением, равным поверхности диафрагмы Sд , своим выходным сечением примыкает к горлу рупора площадью S0 . Эта камера играет роль акустического трансформатора с коэффициентом трансформации S0/Sд, согласующего механическое сопротивление подвижной системы громкоговорителя с входным механическим сопротивлением рупора, являющимся, по существу, сопротивлением нагрузки. Поскольку конструктор имеет возможность изменять коэффициент трансформации в широких пределах, то можно выбрать такой режим нагрузки подвижной системы, при котором будут достигнуты выгодные условия передачи энергии колебаний рупору.

Рис. 4.7. Внешний вид рупорного громкоговорителя.

Специализация головок

Частотная специализация головок явилась вынужденной мерой в ответ на желание получить приемлемые характеристики АС (направленность, КПД, уровень нелинейных и линейных искажений и т.д.) в широкой полосе частот.

ВЧ головки

В качестве материала куполов головок используют различные, часто патентованные материалы. Обычно это текстиль, полимеры, алюминий, титан. В магнитных системах применяют как феррит, так и сплавы редкоземельных металлов (кобальт, самарий, неодим). Экзотические сплавы используют для уменьшения габаритов головок, что позволяет размещать их как в составе подвижной системы НЧ/СЧ головок (коаксиально), так и вне корпуса АС. Уменьшение физических размеров головки способствует снижению дифракционных явлений на ее конструктивных элементах и АО. Важным отличием головок с мягким куполом (текстильным и полимерным) является отсутствие резонансов в ультразвуковой области частот. Диафрагмы, изготовленные из сплавов и окислов металлов, обладают выраженным резонансом на частотах от 16 до 40 кГц. У лучших моделей он не превышает уровня несольких децибел. Хорошего звучания от головок добиваются, применяя оптимально рассчитанные разделительные фильтры, корректирующие цепи и используя высококачественные пассивные компоненты (конденсаторы, катушки индуктивности и резисторы).

СЧ головки

Производители СЧ головок применяют как купольные, так и конусные конструкции диффузоров. Материалы - бумага (с различными типами пропиток), полимеры, алюминий, магнезия (окись магния), кевлар, текстиль, аэрогели, керамика и т.д. Применение высокотехнологичных материалов способствует снижению массы подвижной системы, увеличивает жесткость диффузора, но одновременно приводит к появлению собственных резонансов на верхней границе воспроизводимого диапазона и за ее пределами. Основным типом АО для СЧ головок является закрытый ящик. Иногда встречаются варианты фазоинвертора и открытого оформления.

НЧ головки

Низкочастотные головки в акустическом оформлении АС являются, пожалуй, самой спорной и сложной их составной частью. Спорной - в смысле количества мнений и суждений о том, каким должен быть бас. Сложной - в смысле количества вариантов возможного оформления и требований, которые предъявляются к головкам. Для изготовления диффузоров применяют бумагу (с соответствующей пропиткой), полимеры, сплавы алюминия, аэрогели, кевлар, графитовые композиты и т.д.

Одна из самых больших проблем НЧ головок - большое значение коэффициента нелинейных искажений (КНИ) на нижней границе диапазона. Уровень искажений зависит как от собственных свойств головки, так и от особенностей АО. В немалой степени КНИ зависит и от значения максимального линейного смещения (МЛС) подвижной системы. Произведение значения МЛС на эффективную площадь диффузора головки (Sd) дает величину максимального объемного смещения (Vd). Чем больше величина отношения Vd к объему АС, тем в более тяжелых условиях приходится работать головке.

Типы акустических оформлений

Акустическое оформление - конструктивный элемент громкоговорителя, обеспечивающий эффективное излучение звука.

Плоский экран

Диффузор громкоговорителя излучает две звуковые волны (вперед и назад), причем сдвинутые по фазе на 180°. Если обе эти волны с тем же сдвигом фаз попадут к нашему уху, то мы вообще ничего не услышим - противофазные волны просто скомпенсируют друг друга. В реальном случае полной компенсации не происходит потому, что в направлении вперед громкоговоритель излучает более сильную волну.
Волна, возникающая сзади диффузора, приходит к слушателю более длинным путем, то есть с некоторым опозданием. На высоких звуковых частотах, когда период мал, из-за этого опоздания появляется дополнительный сдвиг фаз и противофазные волны действуют согласованно, в фазе. На средних и особенно на низких частотах опоздание составляет лишь небольшую часть периода, и заметного дополнительного сдвига фаз не получается. Способ устранения этих недостатков напрашивается сам собой: нужно просто искусственно увеличить опоздание задней волны. Сделать это проще всего с помощью акустического экрана. Даже при сравнительно небольших его размерах воспроизведение низких частот значительно улучшается. Вместе с тем в области средних, и особенно высоких, частот экран уже не оказывает существенного влияния. Конструктивно экран рекомендуется выполнять в виде толстой доски или фанеры толщиной 10 ... 20 мм, в которой вырезано отверстие по диаметру диффузородержателя громкоговорителя. В это отверстие последний и вставляется. Экран выполняют квадратной или лучше прямоугольной формы. Предпочтительное отношение сторон прямоугольника 2:1 ... 3:1.

Открытый корпус

Распространенный вид акустического оформления - открытый корпус. Он представляет собой ящик, у которого задняя стенка полностью отсутствует, или же имеет ряд сквозных отверстий. Головки устанавливаются обычно на передней стенке ящика. Его внутренний объем, как правило, используется для размещения деталей электрической схемы. Акустическое действие открытого оформления подобно действию экрана. Наибольшее влияние на частотную характеристику акустической системы с открытым оформлением оказывают передняя стенка (на которой смонтированы головки громкоговорителей) и ее размеры. Важен не внутренний объем оформления, а площадь передней стенки.. Размеры ее из-за влияния боковых можно делать на 25 ... 40 % меньше размеров экрана.

Рис. 4.8. Зависимость неравномерности частотных характеристик громкоговорителя от акустических оформлений различной формы.

Конфигурация оформления закрытого типа оказывает большое влияние на форму частотной характеристики на средних частотах, вызывая появление многочисленных пиков и провалов в случае неудачной формы. Это хорошо видно из рассмотрения частотных характеристик (рис. 4.8) для разных конфигураций оформления: сферического (шара), куба, усеченной пирамиды, параллепипеда. Наиболее благоприятной формой является сфера.

Закрытый корпус

Очень большое распространение в последнее время приобрели закрытые системы. Преимущество их в том, что задняя поверхность диффузора не излучает, и, таким образом, полностью отсутствует акустическое "короткое замыкание". Но закрытые системы имеют другой недостаток. Он заключается в том, что при колебаниях диффузора он должен превозмогать дополнительную упругость воздуха в объеме ящика. Наличие этой дополнительной упругости приводит к тому, что повышается резонансная частота подвижной системы громкоговорителя, в результате чего ухудшается воспроизведение частот, лежащих ниже этой частоты. Чтобы резонансная частота все же не была чрезмерно высокой, применяют головки громкоговорителей с тяжелой подвижной системой. Однако следует иметь в виду, что увеличение массы подвижной системы влечет за собой понижение чувствительности акустической системы в целом. Конструктивно закрытые системы надо выполнять так, чтобы отсутствовали какие-либо щели и отверстия, наличие которых сразу же может превратить закрытую систему в открытую. Такой тип оформления характеризуется спадом частотной характеристики АС с наклоном 12 дБ/октаву ниже граничной частоты. Полная добротность головки в закрытом корпусе (Qts) зависит от соотношения эквивалентного объема головки и внутреннего объема корпуса. От значения полной добротности зависит частотная и переходная характеристики АС. Например:

  • при Qts = 0.5 переходная характеристика носит апериодический характер (не имеет выбросов), а частотная характеристика на резонансной частоте АС имеет спад около 6 дБ (спад по мощности в 4 раза);
  • при Qts = 0.57 АС имеет линейную фазовую характеристику (аппроксимация по Бесселю) с небольшим выбросом на переходной характеристике;
  • при Qts <= 0.707 АЧХ носит гладкий характер, на переходной характеристике появляются колебательные процессы;
  • при Qts > 0.707 на АЧХ появляется максимум переходная характеристика носит колебательный характер;
  • при Qts = 1.1 достигается максимум КПД.

Рис. 4.9. Внешний вид обычной колонки.

Корпус с фазоинвертором

Стремление получить достаточно хорошее воспроизведение низких частот при умеренном объеме акустического оформления довольно хорошо достигается в так называемых фазоинверсных системах. Их конструкция достаточно проста. В корпусе закрытой системы делается щель или отверстие. В последнее может быть вставлена трубка (рис. 4.10).

Рис. 4.10. Акустическая система с фазоинвертором.

Упругость объема воздуха в оформлении резонирует на какой-то частоте с массой воздуха в отверстии или трубке. Эта частота называется резонансной частотой фазоинвертора. Таким образом, акустическая система в целом становится состоящей как бы из двух резонансных систем - громкоговорителя и оформления с отверстием. При правильно выбранном соотношении резонансных частот этих систем воспроизведение низких частот значительно улучшается по сравнению с закрытым оформлением такого же объема. Недостатком таких систем является резкий спад звукового давления на частотах ниже резонансной. Несмотря на очевидные преимущества акустических систем с фазоинвертором, очень часто такие системы, изготовленные даже опытными людьми, не дают ожидаемых от них результатов. Причина в том, что для получения необходимого эффекта фазоинвертор должен быть правильно рассчитан и настроен. Разновидностью фазоинвертора являются акустические системы с пассивным излучателем. Вспомогательный низкочастотный излучатель представляет собой низкочастотную головку громкоговорителя, лишенную магнита и звуковой катушки. Основным достоинством фазоинвертора с пассивным излучателем является возможность настройки его на требуемую частоту при меньших размерах корпуса путем изменения массы пассивного излучателя. По сравнению с закрытым корпусом у фазоинвертора больше вариантов аппроксимации частотной характеристики. В зависимости от добротности головки Qts (и желания получить гладкую АЧХ) этих вариантов может быть три:

  • аппроксимация квазитретьего порядка. Наиболее часто применяется при полной добротности головки (включая сопротивление разделительных фильтров) меньше 0,383. Частота среза АС в этом случае выше собственной резонансной частоты головки. АЧХ носит гладкий характер;
  • аппроксимация по Баттерворту четвертого порядка. Применяется при полной добротности головки (включая сопротивление разделительных фильтров) равной 0,383. При этом частота настройки фазоинвертора совпадает с резонансной частотой головки Fs. АЧХ носит гладкий характер.
  • аппроксимация по Чебышеву четвертого порядка. Применяется при полной добротности головки (включая сопротивление разделительных фильтров) больше 0,383. Частота настройки фазоинвертора ниже собственной резонансной частоты головки. АЧХ носит колебательный характер с заданной неравномерностью.

Переходная характеристика для всех случаев аппроксимации носит колебательный характер.
Максимум КПД достигается при значении полной добротности Qts около 0.5 и неравномерности АЧХ около 0.2 дБ. Как и для АО типа закрытый корпус, максимум КПД не соответствует получению приемлемой переходной, а иногда и частотной характеристик.
Разумеется, что говоря о "гладкой" АЧХ, имеется в виду теоретически достижимую частотную характеристику. Влияние АО и характеристики помещения в расчетных соотношениях обычно не учитывается. К достоинствам АО типа фазоинвертор (по отношению к закрытому корпусу) можно отнести следующие:

  • при равных объемах корпуса и равных нижних граничных частотах АС с фазоинвертором имеет КПД на 3 дБ больше закрытой;
  • при заданных одинаковых КПД и нижней граничной частоте АС с фазоинвертором имеет меньший объем корпуса;
  • при заданных одинаковых КПД и объеме корпуса АС с фазоинвертором имеет в 1.26 раза более низкую граничную частоту;
  • при одинаковых требованиях к максимальной акустической мощности фазоинверсная система имеет меньшую величину максимального смещения диффузора (и величину объемного смещения) в области частоты настройки фазоинвертора;
  • при равных объемах корпуса и равных нижних граничных частотах АС с фазоинвертором имеет более легкую подвижную систему и больший коэффициент электромеханической обратной связи BI (B - плотность магнитного потока в воздушном зазоре магнитной системы, I - длина провода звуковой катушки в зазоре).

Корпус с лабиринтом

Для того чтобы избежать акустического "короткого замыкания", в свое время было предложено акустическое оформление с лабиринтом. Один из возможных вариантов его конструкции приведен на рис. 4.11. Изображенная акустическая система состоит из корпуса, на передней панели которого укреплена головка. Задняя сторона диффузора работает на образованный рядом перегородок зигзагообразный звукопровод - лабиринт. Второй конец лабиринта заканчивается выходным отверстием на одной из стенок корпуса. Поперечное сечение лабиринта обычно прямоугольное или круглое. Выпрямленная длина лабиринта должна быть равной примерно половине длины волны на низкой граничной частоте акустической системы, благодаря чему излучения из выходного отверстия лабиринта будут совпадать по фазе с излучением передней стороны диффузора.

Рис. 4.11. Устройство акустической системы с лабиринтом

Рупорные системы

Применение рупора, нагружающего подвижную систему головки громкоговорителя, очень сильно (в десяток раз) улучшает коэффициент полезного действия последней и, таким образом, дает возможность получить достаточную величину звукового давления и, следовательно, громкость при сравнительно небольшой мощности усилителя. Формой рупора, обеспечивающей наилучшее воспроизведение низких частот, является так называемая экспоненциальная. Однако для хорошего воспроизведения низких частот нужно иметь достаточное выходное отверстие рупора - устья. Его диаметр должен быть не менее lгр/p. Отсюда для нижней граничной частоты 100 Гц, для которой длина волны составляет 3,4 м, диаметр устья должен составлять около 110 см. Для более низких граничных частот размеры устья рупора будут еще больше. Насколько спорным является применение рупорного оформления для воспроизведения низких частот, настолько же оправданным является его использование в громкоговорителях, служащих для воспроизведения средних и высоких частот, что имеет место в многочисленных конструкциях некоторых зарубежных фирм. Особенно хорошие результаты дает применение рупоров с сильно демпфированными стенками. Демпфирование производится, например, незасыхающим компаундом, заливаемым между двойными стенками рупора, изготовляемыми в этом случае из листового тонкого материала.

Рис. 4.12. Примерный вид рупорной системы.

Специализация АС

Условно все существующие АС можно разделить на двухполосные и многополосные. Двухполосные АС имеют не менее двух головок громкоговорителей, электрически разделенных на единственной частоте (для симметричных фильтров), а многополосные - не менее двух частот раздела. Как двухполосные, так и многополосные АС имеют свои достоинства и недостатки.

Двухполосные АС

Положительные стороны:

  • удается избежать раздела частот в критической области 200 - 800 Гц;
  • всего одна область совместного действия головок (область в районе частоты раздела, когда головки совместно излучают сигнал одной частоты и уровнем излучения каждой нельзя пренебрегать);
  • обычно небольшое соотношение диаметров головок и небольшое расстояние между ними (лучшая согласованность). Соотношение диаметров головок обусловлено требованием обеспечения линейной АЧХ и приемлемой диаграммой направленности на частоте раздела. Диаметры динамических головок составляют от 19 до 38 мм. НЧ/СЧ головка подбирается из расчета получения хорошей согласованности по указанным выше параметрам. Применение низкочастотных головок большого диаметра - 200 мм и более - может привести к неравномерности АЧХ и плохой диаграмме направленности при отклонении от оси АС;
  • обычно меньшие размеры акустического оформления (легче обеспечить требуемую жесткость, уменьшить дифракционные эффекты на плоскостях и гранях корпуса, большая гибкость в выборе места и высоты установки АС).

Недостатки:

  • требование небольшого соотношения диаметров головок не позволяет (в общем случае) получить необходимую отдачу в низкочастотном диапазоне;
  • большая нагрузка на НЧ/СЧ головку в диапазоне частот настройки акустического оформления (и фазоинвертор, и закрытый ящик) может приводить к возникновению многих видов линейных и нелинейных искажений.

Выбор частоты раздела головок в двухполосной конструкции является серьезным компромиссом. Так, сдвиг частоты раздела в сторону низкочастотного диапазона отрицательно сказывается на режимах работы ВЧ головки. При приближении частоты раздела к ее резонансной частоте увеличивается значение смещения звуковой катушки. Линейная величина этого смещения обычно не превышает 0,3 мм, поэтому в звучании головки может возникнуть определенная жесткость. Большинство современных ВЧ головок, находящих применение в АС класса High-End, имеют резонансные частоты, лежащие в диапазоне 500 - 1500 Гц, хотя встречаются экземпляры, у которых этот параметр лежит в пределах от 350 Гц до 8 кГц. Смещение частоты раздела в сторону высоких частот приводит к тому, что НЧ/СЧ головке приходится воспроизводить звуковые сигналы в очень широкой полосе частот. Во многих АС ее частотный диапазон может перекрывать 5-6 октав.

Рис. 4.13. Примерный вид двухполосных АС.

Многополосные

Теоретически на количество полос АС ограничений нет. Чаще всего можно встретить трех и пятиполосные конструкции. Такие системы предоставляют большую гибкость в создании для каждой из головок оптимального режима нагрузки по мощности и частотному диапазону. Но одновременно возникают несколько проблем:

  • большие габариты (сложнее обеспечить достаточную для отсутствия резонансов прочность, проблемы с дифракцией);
  • более сложные кроссоверы;
  • несколько областей совместного действия головок;
  • необходимость выравнивания звукового давления головок в частотных полосах.

Рис. 4.14. Примерный вид многополосных АС

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.