Сделай Сам Свою Работу на 5

ТЕРМОДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ МЕТАЛЛА





Термодинамически устойчивый в определенной коррозионной среде металл не подвергается разрушению в данных условиях.

При помощи сравнения обратимых потенциалов катодного и анодного процессов или же знака изменения изобарно-изотермического потенциала процесса можно определить, возможно ли самопроизвольное разрушение металла.

Большое влияние на термодинамическую устойчивость металла оказывают условия коррозионной среды. Одни металлы термодинамически устойчивы (не корродируют) в одних условиях, а другие – в других.

Большинство металлов не отличаются термодинамической устойчивостью в атмосфере или водных средах. Например, алюминий, титан, магний на воздухе и в многих других коррозионных средах термодинамически неустойчивы, но не корродируют из-за образования на их поверхности пассивных пленок.

КРИСТАЛЛОГРАФИЧЕСКИЙ ФАКТОР

На коррозионную стойкость металла влияет также его кристаллическая структура и распределение атомов в решетке. Металл с плотноупакованной решеткой отличается зачастую повышенной коррозионной стойкостью. Происходит повышение энергии активации ионизации металла и снижение поверхностной энергии.



При возникновении на поверхности металла защитной пленки плотность немалое значение играет соответствие кристаллической структуры пленки и поверхностного слоя металла. Если несоответствие достаточно большое, то в пленке возникают напряжения, которые ее разрушают.

При контакте с коррозионной средой сначала идет разрушение неукомплектованных слоев, атомов кристаллической решетки металла. Кроме того в первую очередь также растворяются поверхностные дефекты кристаллографической решетки.

ГЕТЕРОГЕННОСТЬ СПЛАВОВ И ВЕЛИЧИНА ЗЕРНА

Влияет на коррозионную стойкость сплавов и их гетерогенность, т.е. разнородность структуры. Анодные включения, в зависимости от их распределения в сплаве, могут сильно усилить скорость коррозии металла.

Катодные включения, в зависимости от характера контроля коррозионного процесса, могут почти не влиять на скорость коррозии, увеличивать либо уменьшать ее.

Таким образом, гетерогенность сплава может оказывать на процесс электрохимической коррозии разнообразное влияние.



Величина зерна на скорость электрохимической коррозии влияет мало, только в некоторых случаях, когда существует вероятность межкристаллитной коррозии.

 

МЕХАНИЧЕСКИЙ ФАКТОР

Распространенными условиями эксплуатации металлоконструкций являются одновременное воздействие на металл механических напряжений и коррозионной среды. Напряжения могут быть внешние (нагрузки приложенные извне) и внутренние (результат деформаций и др.), постоянные и переменные, кавитационные воздействия либо истирающие.

Механический фактор на скорость электрохимической коррозии влияет очень сильно, т.к. под воздействием напряжений разрушаются защитные оксидные пленки, происходят различные фазовые превращения, снижается термодинамическая устойчивость металла, усиливается электрохимическая гетерогенность металла.

 

ВНЕШНИЕ ФАКТОРЫ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ

На процесс электрохимической коррозии оказывают огромное влияние как внутренние, так и внешние факторы.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ЭЛЕКТРОХИМИЧЕСКУЮ КОРРОЗИЮ

Температура оказывает значительное влияние на ход процесса электрохимической коррозии, т.к. изменяет растворимость вторичных продуктов коррозии, деполяризатора, влияет на скорость диффузии, степень анодной пассивности, перенапряжение процессов на электродах и др.

Если процесс электрохимической коррозии протекает в нейтральных растворах (с кислородной деполяризацией), то повышение температуры электролита ускоряет диффузию окисляющего компонента среды (кислорода) к металлу, но уменьшает его растворимость в растворе, снижает перенапряжение ионизации кислорода.



При электрохимической коррозии металла в неокисляющихся кислотах (их растворах), которая протекает с водородной деполяризацией, за счет увеличения температуры снижается перенапряжение водорода.

Если на поверхности металла присутствует защитная пленка, то изменение ее свойств может изменить влияние температуры на скорость электрохимической коррозии.

Изменение температуры по-разному влияет на процессы, протекающие на катоде и аноде, и может привести к изменению полярности электродов.

Разная температура на отдельных участках металлической конструкции может привести к возникновению коррозионных термогальванических пар, т.е. одна часть конструкции будет корродировать с повышенной скоростью.

РН РАСТВОРА

рН показывает активность в растворе водородных ионов и оказывает сильное влияние на скорость электрохимической коррозии, изменяя потенциал катодных деполяризационных процессов (тех, в которых участвуют водородные ионы). Кроме того показатель рН электролита влияет на возможность образования окисных пленок, перенапряжение реакций на электродах.

ВЛИЯНИЕ СКОРОСТИ ДВИЖЕНИЯ РАСТВОРА НА СКОРОСТЬ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ

Влияние скорости движения раствора на скорость электрохимической коррозии имеет сложный характер и особенно сильно это влияние проявляется в нейтральных электролитах, где процесс разрушения металла проходит с кислородной деполяризацией. При перемешивании электролита диффузия кислорода к поверхности металла облегчается и довольно часто меняется характер процесса.

Если электрохимическая коррозия протекает в кислых средах, то скорость движения электролита на характер коррозионного процесса особо сильного влияния не оказывает.

 

Не нашел

 

3.7.2.1)Коррозионное растрескивание металлов – это один из видов коррозионных разрушений (коррозии), при котором в металле зарождается и развивается множество трещин. Возникает коррозионное растрескивание при одновременном воздействии на металл агрессивной коррозионной среды и растягивающих напряжений. Характерной особенностью коррозионного растрескивания является практически полное отсутствие пластической деформации металлического изделия.

Коррозионное растрескивание – очень опасный вид разрушения металла, т.к. не всегда его можно вовремя заметить. Чаще всего коррозионному растрескиванию подвергаются металлы, в которых после механической или термической обработки присутствуют остаточные напряжения. Также металлические изделия, эксплуатируемые при повышенных температурах и давлениях. Встречается коррозионное растрескивание при сварке, сборке или монтаже металлических деталей и т.п.

Коррозионному растрескиванию могут подвергаться все металлы и сплавы, которые находятся в напряженном состоянии. Большое влияние на интенсивность коррозионного растрескивания оказывает коррозионная среда (ее характер, состав и концентрация агрессивных агентов).

В теплоэнергетической, химической и нефтегазовой отраслях 20 – 40% всех коррозионных разрушений приходится именно на коррозионное растрескивание.

Особенности коррозионного разрушения металлов:

- существует возможность возникновения транскристаллитных и межкристаллитных трещин с разветвлениями;

- металл с появлением трещин охрупчивается;

- от величины приложенных растягивающих напряжений зависит время до начала образования трещины (индукционный период).

Коррозионное растрескивание сталей наблюдается в растворах, которые содержат кислоты, хлориды, щелочи, нитраты, H2S, CO2, NH3. Менее склонны к коррозионному растрескиванию углеродистые стали с перлитной или перлитно-ферритной структурой, содержащие в своем составе более 0,2% углерода. Мартенситная структура стали является самой чувствительной к данному виду коррозии, т.к. все режимы термообработки, в результате которых образуется мартенсит, делают сталь склонной к коррозионному растрескиванию.

Хромоникелевые аустенитные стали более подвержены коррозионному растрескиванию, чем ферритные и полуферритные хромистые стали. В нержавеющих сталях аустенит не обладает достаточной стабильностью и в условиях химических предприятий достаточно часто встречается коррозионное растрескивание аустенитных хромоникелевых сталей. Введение стабилизаторов, легирующих компонентов, увеличение содержания никеля не оказывает существенного воздействия на склонность аустенитных сталей к коррозионному воздействию.

Коррозионному растрескиванию подвержены не только черные металлы и сплавы, а и цветные (например, медноцинковые и алюминиевомагниевые сплавы). В присутствии паров аммиака быстро корродируют с коррозионным растрескиванием сплавы меди с оловом, цинком и алюминием. А в растворах карбонатов, хлоридов, сульфатов и хроматов разрушаются магниевые сплавы, которые находятся в напряженном состоянии.

 

3.7.2.2.)Коррозионная усталость металла – разрушение металла под воздействием периодической динамической нагрузки (знакопеременных напряжений) и коррозионных сред. Коррозионная усталость металла среди других разновидностей коррозии под напряжением встречается наиболее часто. При нахождении металла в коррозионной среде некоторое время, предел его выносливости понижается, и конструкция уже не выдерживает нормальных для нее ранее напряжений. Коррозионная усталость металла сопровождается развитием межкристаллитных и транскристаллитных трещин (по границам зерен), которые разрушают металл изнутри. Развитие трещин идет, главным образом, в момент, когда металлоконструкция испытывает нагрузку. В результате периодических термических напряжений в металле защитная оксидная либо любая другая пленка на его поверхности разрушается. Коррозионная среда имеет свободный доступ к открытой поверхности. Сквозь поверхностные трещины агрессивная коррозионная среда также проникает вглубь металла, интенсифицируя разрушение.

Коррозионной усталости подвергаются сплавы на основе железа, никеля, алюминия, меди и многих других металлов.

Склонность металла к коррозионно-усталостному разрушению определяется его пределом выносливости. Пределом выносливости принято считать максимальное напряжение, при котором конструкция может выдержать 107 (и более) циклов нагружения, при этом, не проявляя признаков коррозионной усталости металла.

Значительное влияние на величину коррозионной усталости оказывают свойства рабочей среды, параметры нагружения, количество примесей в основном металле, температура и др. С увеличением агрессивности коррозионной среды уменьшается усталостная прочность сплавов.

Для защиты от коррозионной усталости применяют протекторную и катодную защиту, на поверхность защищаемого изделия наносят анодные покрытия алюминия, кадмия, цинка. Дополнительно применяют специальные режимы термической обработки, которые увеличивают предел коррозионной усталости сплавов (например, применение закалки с последующим отпуском).

 

3.4.2.3) Коррозия при трении- разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения. При колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды происходит коррозия истиранием, или фреттинг-коррозия. Устранить коррозию при трении или вибрации возможно правильным выбором конструкционного материала, снижением коэффициента трения, применением покрытий и т.д.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.