Сделай Сам Свою Работу на 5

Понятие функции. График функции. Способы заданий функций.





 

функция — это соответствие между элементами двух множеств, установленное по такому правилу, что каждому элементу одного множества ставится в соответствие некоторый элемент из другого множества.

график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y) которых связаны указанной функцией:

точка располагается (или находится) на графике функции тогда и только тогда, когда .

Таким образом, функция может быть адекватно описана своим графиком.

Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.



Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

Аналитический способ. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.



Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа — основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ. Этот способ состоит в том, что функциональная зависимость выражается словами.

Пример 1: функция E(x) — целая часть числа x. Вообще через E(x) = [x] обозначают наибольшее из целых чисел, которое не превышает x. Иными словами, если x = r + q, где r — целое число (может быть и отрицательным) и qпринадлежит интервалу [0; 1), то [x] = r. Функция E(x) = [x] постоянна на промежутке [r; r+1) и на нем [x] = r.



Пример 2: функция y = {x} — дробная часть числа. Точнее y ={x} = x - [x], где [x] — целая часть числа x. Эта функция определена для всех x. Если x — произвольное число, то представив его в виде x = r + q ( r = [x]), где r — целое число и q лежит в интервале [0; 1), получим {x} = r + q - r=q

Основными недостатками словесного способа задания функции являются невозможность вычисления значений функции при произвольном значении аргумента и отсутствие наглядности. Главное преимущество же заключается в возможности задания тех функций, которые не удается выразить аналитически.

 

 

2. Основные характеристики функций. Обратная и сложная функция.

 

Ключевые слова: область определения функции, область значений функции четная функция, нечетная функция, периодическая функция. монотонная функция. убывающая функция. возрастающая функция, ограниченная функция.

В элементарной математике изучаются функции только на множестве действительных чисел R.
Это значит, что аргумент функции может принимать только те действительные значения, при которых функция определена,
т.e.она также принимает только действительные значения.

Множество X всех допустимых действительных значений аргументаx, при которых функция y = f (x) определена, называется областью определения функции.
Множество Y всех действительных значений y, которые принимает функция,называется областью значений функции.

Теперь можно дать более точное определение функции:

правило(закон) соответствия между множествами X и Y, по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y, называется функцией.

Функция считается заданной, если:

  1. задана область определения функции X ;
  2. задана область значений функции Y ;
  3. известно правило (закон) соответствия, причем такое, что для каждого значения аргумента может быть найдено только одно значение функции. Это требование однозначности функции является обязательным.

Если для любых двух значений аргумента x1и x2 из условия x2 > x1 следует f ( x2 ) > f ( x1 ), то функция f (x ) называетсявозрастающей;
если для любых x1 и x2 из условия x2 > x1 следует f (x2)< f (x1),то функция f (x ) называется убывающей.
Функция, которая только возрастает или только убывает, называется монотонной.

Функция называется ограниченной, если существует такое положительное число M, что |f ( x )| M для всех значений x .
Если такого числа не существует, то функция - неограниченная.

Функция y = f (x) называется непрерывной в точке x = a, если :

  1. функция определена при x = a, т.e. f (a) существует;
  2. существует конечный предел limx af(x);
  3. f (a) = limx af(x) .

Если не выполняется хотя бы одно из этих условий, то функция называется разрывной в точке x = a.
Если функция непрерывна во всех точках своей области определения, то она называется непрерывной функцией.

Если для любого x из области определения функции имеет место: f ( - x ) = f ( x ), то функция называется чётной;
если же имеет место: f (-x) = - f (x), то функция называется нечётной.

График чётной функции симетричен относительно оси Y ( рис.5 ),
a график нечётной функции симметричен относительно начала координат ( рис.6 ).

Функция f(x) - периодическая, если существует такое отличное от нуля число T,
что для любого x из области определения функции имеет место: f ( x + T ) = f ( x ).
Такое наименьшее число называется периодом функции.

Все тригонометрические функции являются периодическими.

Пример 1. Доказать, что sin x имеет период 2 .
Решение. Мы знаем, что sin ( x+ 2 n ) = sin x, где n = 0, ± 1, ± 2, …
Следовательно, добавление 2 n к аргументу синуса не меняет его значениe.
Предположим, что P – такое число, т.e. равенство: sin ( x+ P ) = sin x, справедливо для любогозначения x.
Но тогда оно имеет место и при x = / 2 , т.e. sin ( / 2 + P ) = sin / 2 = 1.
Но по формуле приведения sin ( / 2 + P ) = cos P.
Тогда из двух последних равенств следует, чтоcos P = 1, но мы знаем, что это верно лишь при P = 2 n.
Так как наименьшим отличным от нуля числом из 2 n является 2 , то это число и есть период sin x.
Рассмотрим sin 2x = sin ( 2x + 2 n ) = sin [ 2 ( x + n ) ] .
Мы видим,что добавление n к аргументу x, не меняет значение функции.
Наименьшее отличное от нуля число из n есть , таким образом, это период sin 2x .

 

Значение аргумента, при котором функция равна 0, называется нулём (корнем) функции.

Функция может иметь несколько нулей.

Например, функция y = x (x + 1)(x-3) имеет три нуля: x = 0, x = - 1, x =3.

Геометрически нуль функции – это абсцисса точки пересечения графика функции с осью Х .

На рис.7 представлен график функции с нулями: x = a, x = b и x = c .

Если график функции неограниченно приближается к некоторой прямой при своём удалении от начала координат, то эта прямая называется асимптотой.

Обратная функция

Пусть задана функция у=ƒ(х) с областью определения D и множеством значений Е. Если каждому значению уєЕ соответствует единственное значение хєD, то определена функция х=φ(у) с областью определения Е и множеством значений D (см. рис. 102).

Такая функция φ(у) называется обратной к функции ƒ(х) и записывается в следующем виде: х=j(y)=f-1(y).Про функции у=ƒ(х) и х=φ(у) говорят, что они являются взаимно обратными. Чтобы найти функцию х=φ(у), обратную к функции у=ƒ (х), достаточно решить уравнение ƒ(х)=у относительно х (если это возможно).

Примеры:

1. Для функции у=2х обратной функцией является функция х=у/2;

2.Для функции у=х2 хє[0;1] обратной функцией является х=√у; заметим, что для функции у=х2, заданной на отрезке [-1; 1], обратной не существует, т. к. одному значению у соответствует два значения х (так, если у=1/4, то х1=1/2, х2=-1/2).

Из определения обратной функции вытекает, что функция у=ƒ(х) имеет обратную тогда и только тогда, когда функция ƒ(х) задает взаимно однозначное соответствие между множествами D и Е. Отсюда следует, что любая строго монотонная функция имеет обратную. При этом если функция возрастает (убывает), то обратная функция также возрастает (убывает).

Заметим, что функция у=ƒ(х) и обратная ей х=φ(у) изображаются одной и той же кривой, т. е. графики их совпадают. Если же условиться, что, как обычно, независимую переменную (т. е. аргумент) обозначить через х, а зависимую переменную через у, то функция обратная функции у=ƒ(х) запишется в виде у=φ(х).

Это означает, что точка M1(xo;yo) кривой у=ƒ(х) становится точкой М2оо) кривой у=φ(х). Но точки M1 и М2 симметричны относительно прямой у=х (см. рис. 103). Поэтому графики взаимно обратных функции у=ƒ(х) и у=φ(х) симметричны относительно биссектрисы первого и третьего координатных углов.

Сложная функция

Пусть функция у=ƒ(u) определена на множестве D, а функция u= φ(х) на множестве D1, причем для  x D1соответствующее значение u=φ(х) є D. Тогда на множестве D 1 определена функция u=ƒ(φ(х)), которая называется сложной функцией от х (или суперпозицией заданных функций, или функцией от функции).

Переменную u=φ(х) называют промежуточным аргументом сложной функции.

Например, функция у=sin2x есть суперпозиция двух функций у=sinu и u=2х. Сложная функция может иметь несколько промежуточных аргументов.

4. Основные элементарный функции и их графики.

Основными элементарными функциями называют следующие функции.

1) Показательная функция у=aх,a>0, а ≠ 1. На рис. 104 показаны графики показательных функций, соответствующие различным основаниям степени.

2) Степенная функция у=хα, αєR. Примеры графиков степенных функций, соответствующих различным показателям степени, предоставлены на рисунках

3)Логарифмическая функция y=logax, a>0,a≠1;Графики логарифмических функций, соответствующие различным основаниям, показаны на рис. 106.

4) Тригонометрические функции у=sinx, у=cosx, у=tgх, у=ctgx; Графики тригонометрических функций имеют вид, показанный на рис. 107.

5) Обратные тригонометрические функции у=arcsinx, у=arccosх, у=arctgx, у=arcctgx. На рис. 108 показаны графики обратных тригонометрических функций.

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных с помощью конечного числа арифметических операций (сложения, вычитания, умножения, деления) и операций взятия функции от функции, называется элементарной функцией.

Примерами элементарных функций могут служить функции

Примерами неэлементарных функций могут служить функции

5. Понятия предела последовательности и функции. Свойства пределов.

Преде́л фу́нкции (предельное значение функции) в заданной точке,предельной для области определения функции, — такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.

В математике пределом последовательности элементов метрического пространства или топологического пространства называют элемент того же пространства, который обладает свойством «притягивать» элементы заданной последовательности. Пределом последовательности элементовтопологического пространства является такая точка, каждая окрестность которой содержит все элементы последовательности, начиная с некоторого номера. В метрическом пространстве окрестности определяются через функцию расстояния, поэтому понятие предела формулируется на языке расстояний. Исторически первым было понятиепредела числовой последовательности, возникающее в математическом анализе, где оно служит основанием для системы приближений и широко используется при построении дифференциального и интегральногоисчислений.

Обозначение:

(читается: предел последовательности икс-энное при эн, стремящемся к бесконечности, равен a)

Свойство последовательности иметь предел называют сходимостью: если у последовательности есть предел, то говорят, что данная последовательность сходится; в противном случае (если у последовательности нет предела) говорят, что последовательность расходится. В хаусдорфовом пространстве и, в частности, метрическом пространстве[1], каждая подпоследовательность сходящейся последовательности сходится, и её предел совпадает с пределом исходной последовательности. Другими словами, у последовательности элементов хаусдорфово пространства не может быть двух различных пределов. Может, однако, оказаться, что у последовательности нет предела, но существует подпоследовательность (данной последовательности), которая предел имеет. Если из любой последовательности точек пространства можно выделить сходящуюся подпоследовательность, то, говорят, что данное пространство обладает свойством секвенциальной компактности (или, просто, компактности, если компактность определяется исключительно в терминах последовательностей).

Понятие предела последовательности непосредственно связано с понятием предельной точки (множества): если у множества есть предельная точка, то существует последовательность элементов данного множества, сходящаяся к данной точке.

Определение

Пусть дано топологическое пространство и последовательность Тогда, если существует элемент такой, что

,

где — открытое множество, содержащее , то он называется пределом последовательности . Если пространство является метрическим, то предел можно определить с помощью метрики: если существует элемент такой, что

,

где — метрика, то называется пределом .

Примеры

· Если пространство снабжено антидискретной топологией, то пределом любой последовательности будет любой элемент пространства.

 

6. Предел функции в точке. Односторонние пределы.

Функция одной переменной. Определение предела функции в точке по Коши.Число bназывается пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любого положительного числа  существует такое положительное число , что при всех х ≠ а, таких, что |xa | < , выполняется неравенство
| f(x) – a | <  .

Определение предела функции в точке по Гейне. Число b называется пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любой последовательности {xn}, сходящейся к а(стремящейся к а, имеющей пределом число а), причем ни при каком значении n хnа, последовательность {yn = f(xn)} сходится к b.

Данные определения предполагают, что функция у = f(x) определена в некоторой окрестноститочки а, кроме, быть может, самой точки а.

Определения предела функции в точке по Коши и по Гейне эквивалентны: если число b служит пределом по одному из них, то это верно и по второму.

Указанный предел обозначается так:

Геометрически существование предела функции в точке по Коши означает, что для любого числа > 0 можно указать на координатной плоскости такой прямоугольник с основанием 2 > 0, высотой 2 и центром в точке (а; b), что все точки графика данной функции на интервале (а– ; а+ ), за исключением, быть может, точки М(а; f(а)), лежат в этом прямоугольнике

Односторо́нний преде́л в математическом анализе — предел числовой функции, подразумевающий «приближение» к предельной точке с одной стороны. Такие пределы называют соответственно левосторо́нним преде́лом (или преде́лом сле́ва) и правосторо́нним преде́лом (преде́лом спра́ва). Пусть на некотором числовом множестве задана числовая функция и число — предельная точка области определения . Существуют различные определения для односторонних пределов функции в точке , но все они эквивалентны.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.