Сделай Сам Свою Работу на 5

Интегральные схемы, виды и классификация





Светодиоды, оптоэлектронные устройства.

Светодиоды -полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой). Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния). Цвет свечения зависит от химического состава проводника.

Оптоэлектронные устройства. Оптоэлектроника — раздел физики и техники, связанный с преобразованием электромагнитного излучения оптического диапазона в электрический ток и обратно.

Приборы оптоэлектроники:

1. Для преобразования света в электрический ток — фотосопротивления (фоторезисторы), фотодиоды (pin, лавинный),фототранзисторы, фототиристоры, пироэлектрические приёмники, приборы с зарядовой связью (ПЗС), фотоэлектронные умножители (ФЭУ).

2. Для преобразования тока в световое излучение — различного рода лампы накаливания, электролюминесцентные индикаторы, полупроводниковые светодиоды и лазеры (газовые, твердотельные, полупроводниковые).



3. Для изоляции электрических цепей (последовательного преобразования «ток-свет-ток») служат отдельные устройства оптоэлектроники — оптопары — резисторные, диодные, транзисторные, тиристорные, оптопары на однопереходных фототранзисторах и оптопары с открытым оптическим каналом.

4. Для применения в различных электронных устройствах служат оптоэлектронные интегральные схемы — интегральные микросхемы, в которых осуществляется оптическая связь между отдельными узлами или компонентами с целью изоляции их друг от друга (гальванической развязки).

 

Устройства отображения информации на электронно-лучевых трубках

Электронно-лучевой трубкой (ЭЛТ) называют вакуумную электронную лампу, в которой поток электронов концентрируют в луч, направленный в сторону экрана. Обычно концентрацию (фокусировку) электронов в луч осуществляют либо воздействием электрического поля, либо магнитного поля. К разновидностям ЭЛТ относят: электромагнитные, электростатические, запоминающие, индикаторные трубки, кинескопы и прочие. ЭЛТ с электростатической фокусировкой используют в осциллографах в качестве устройства отображения осциллограмм.



Электронно-лучевая трубка состоит из трёх важнейших частей – электронной пушки, системы отклонения луча и экрана.

4. ЭЛТ с электростатическим отклонением - На пути электронного луча поставлены под прямым углом друг к другу две пары отклоняющих пластин Пхи Пy. Напряжение, подведенное к ним, создает электрическое поле, отклоняющее электронный луч в сторону положительно заряженной пластины. Поле пластин является для электронов поперечным. В таком поле электроны движутся по параболическим траекториям, а, выйдя из него, далее движутся по инерции прямолинейно, т. е. электронный луч получает угловое отклонение. Чем больше напряжение на пластинах, тем сильнее отклоняется луч и тем больше смещается на люминесцентном экране светящееся, так называемое электронное пятно, возникающее от ударов электронов.

Пластины Пyотклоняют луч по вертикали и называются пластинами вертикального отклонения (пластинами «игрек»), а пластины Пх — пластинами горизонтального отклонения (пластинами «икс»). Одна пластина каждой пары иногда соединяется с корпусом аппаратуры (шасси), т. е. имеет нулевой потенциал. Такое включение пластин называется несимметричным. Для того чтобы между вторым анодом и корпусом не создавалось электрическое поле, влияющее на полет электронов, второй анод обычно также бывает соединен с корпусом. Тогда при отсутствии напряжения на отклоняющих пластинах между ними и вторым анодом не будет никакого поля, действующего на электронный луч.



5. ЭЛТ с электромагнитным отклонением – электромагнитный отклоненитель это фокусирующая катушка, расположенная на горловине трубки. Катушка создает продольное магнитное поле, магниты линии которого в пределах катушки параллельны оси трубки. Плотность электронов в луче регулируется изменением управляющего напряжения, прикладываемого между управляющим электродом и катодом кинескопа. Управляющим напряжением служит полный телевизионный сигнал, поступающий с выхода телевизионного приемника. С изменением размаха видеосигнала соответственно изменяется величина тока луча, а следовательно, и яркость свечения точек экрана, куда падает луч.

6. Кинескопы - электронно-лучевой прибор, преобразующий электрические сигналы в световые. Широко применяется в устройстве телевизоров, до 1990-х годов использовались телевизоры исключительно на основе кинескопа.

Основные части:

§ электронная пушка, предназначена для формирования электронного луча, в цветных кинескопах и многолучевых осциллографических трубках объединяются в электронно-оптический прожектор;

§ экран, покрытый люминофором — веществом, светящимся при попадании на него пучка электронов;

§ отклоняющая система, управляет лучом таким образом, что он формирует требуемое изображение.

 

Интегральные схемы, виды и классификация

Интегральная схема – микроминиатюрное электронное устройство, все или часть элементов которого нераздельно связаны конструктивно и соединены между собой электрически. Различают 2 основных типа полупроводниковые (ПП) и плёночные.

Виды:

1. ПП изготавливают из особо чистых ПП материалов (обычно кремний, германий), в которых перестраивают саму решётку кристаллов так, что отдельные области кристалла становятся элементами сложной схемы. Маленькая пластинка из кристаллического материала размерами ~1 мм2 превращается в сложнейший электронный прибор, эквивалентный радиотехническому блоку из 50—100 и более обычных деталей. Он способен усиливать или генерировать сигналы и выполнять многие другие радиотехнические функции.

2. Плёночные И. с. создаются путём осаждения при низком давлении (порядка 1×10-5 мм рт. ст.) различных материалов в виде тонких (толщиною < 1 мкм) или толстых (толщиной > 1 мкм) плёнок на нагретую до определённой температуры полированную подложку (обычно из керамики). В качестве материалов применяют алюминий, золото, титан, нихром, окись тантала, моноокись кремния, титанат бария, окись олова и др. Для получения И. с. с определёнными функциями создаются тонкоплёночные многослойные структуры осаждением на подложку через различные маски (трафареты) материалов с необходимыми свойствами. В таких структурах один из слоев содержит микрорезисторы, другой — микроконденсаторы, несколько следующих — соединительные проводники тока и другие элементы. Все элементы в слоях имеют между собой связи, характерные для конкретных радиотехнических устройств.

8.Гибридные интегральные микросхемы – Гибридные ИС представляют собой комбинацию плёночных пассивных элементов и навесных активных компонентов расположенные на общей диэлектрической подложке. Технологию гибридных ИС можно разделить на технологию изготовления плёночных элементов и технологию монтажа навесных активных компонентов.

9.Полупроводниковые интегральные микросхемы - Полупроводниковые ИС изготавливаются путем формирования в монокристаллическом теле полупроводника структуры ИС при помощи технологических операций. Создаются различные области, обладающие дырочной (р-область) и электронной (п-область) проводимостями. Образованные области в полупроводнике соответствуют по своим функциям определенным элементам: активным (транзистор, диод) и пассивным (резистор, конденсатор и др.). Объемные токоведущие дорожки создаются нанесением на поверхность полупроводника инверсного слоя высокой проводимости. Такая полупроводниковая ИС может представлять собой законченную конструкцию микроэлектронного изделия, т. е. конструкцию электрической цепн, непосредственно реализующей параметры и характеристики этой цепи.

10. Аналоговые микросхемы – это микросхемы предназначенные для преобразования и обработки сигналов, изменяющиеся по закону непрерывной функции. Такие ИС иногда называют линейными, хотя такое название подходит только для усилитилей и стабилизатров,а для других микросхем являются условными.

Аналоговые микросхемы можно разделить на две группы:

1) ИС универсального назначения: матрицы, регистры, диоды, транзисторы.

2) Специалезированые аналоговые ИС: каждая из которых выполняет свою функцию, например перемножение аналоговых сигналов, фильтрацию, ограничение, стабилизацию напряжения и тока, формирование сигналов.

 

11.Цифровые микросхемы – цифровые ИС предназначены для обработки и преобразования сигналов, изменяющиеся по закону дискретной функции. Чаще всего сигнал принимает два основных уровня: логический «0» и логическую «1». Это привело к тому что двоичная система счисления стала основной

12. Основные положения алгебры логики - Алгебра логики— это раздел математики,

изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.

Алгебру логику называют также алгеброй Буля, или булевой алгеброй, по имени английского математика Джорджа Буля, разработавшего в XIX веке ее основные положения. В булевой алгебре высказывания принято обозначать прописными латинскими буквами: A, B, X, Y. В алгебре Буля введены три основные логические операции с высказываниями? Сложение, умножение, отрицание. Определены аксиомы (законы) алгебры логики для выполнения этих операций. Действия, которые производятся над высказываниями, записываются в виде логических выражений.

Логические выражения могут быть простыми и сложными.

Простое логическое выражение состоит из одного высказывания и не содержит логические операции. В простом логическом выражении возможно только два результата — либо «истина», либо «ложь».

Сложное логическое выражение содержит высказывания, объединенные логическими операциями. По аналогии с понятием функции в алгебре сложное логическое выражение содержит аргументы, которыми являются высказывания.

В качестве основныхлогических операций в сложных логических выражениях используются следующие:

• НЕ (логическое отрицание, инверсия);

• ИЛИ (логическое сложение, дизъюнкция);

• И (логическое умножение, конъюнкция).

Логическое отрицание является одноместной операцией, так как в ней участвует одно высказывание. Логическое сложение и умножение — двуместные операции, в них участвует два высказывания. Существуют и другие операции, например операции следования и эквивалентности, правило работы которых можно вывести на основании основных операций.

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении

13. Виды импульсных сигналов. Импульсные сигналы — сигналы, информацию в которых несут параметры импульсов. Импульс — кратковременное отклонение физического процесса от установленного значения. Кратковременное отклонение имеет не абсолютное, а относительное значение, т. е. длительность отклонения меньше или сопоставима с длительностью процесса.

Импульсные сигналы имеют преимущества перед непрерывными сигналами: средняя мощность импульсного сигнала значительно меньше средней мощности непрерывного сигнала при сопоставимой информационной емкости. Кроме того, в паузах между импульсами одного сигнала можно передавать импульсы другого сигнала и тем самым увеличить информационную вместимость канала. Одним из специальных видов импульсных сигналов есть сигналы цифровой и компьютерной техники.

Существуют два вида импульсов: видеоимпульсы и радиоимпульсы.

Видеоимпульсы — это кратковременное отклонение физического параметра, несущего информацию, от установленного значения.

Радиоимпульс — это отрезок высокочастотного колебания определенной формы. Радиоимпульсы широко используют для передачи информации каналами радиосвязи, в телевидении и радиолокации. На практике используют Последовательности импульсов, повторяющиеся через определенный интервал времени.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.